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PREFACE

The technical program of the 13th Annual Meeting of the Society of Engi-
neering Science, Inc., consisted of 159 invited and contributed papers covering
a wide variety of research topics, a plenary session, and the Annual Society of
Engineering Science Lecture. Thirty-three of the technical sessions contained
invited and/or contributed papers while two of the sessions were conducted as
panel discussions with audience participation.

These Proceedings, which contain the technical program of the meeting, are
presented in four volumes arranged by subject material. Papers in materials
science are contained in Volume I, Volume II contains the structures, dynamics,
applied mathematics, and computer science papers. Volume III contains papers
in the areas of acoustics, environmental modeling, and energy. Papers in the
area of flight sciences are contained in Volume IV, A complete Table of Contents
and an Author Index are included in each volume.

We would like to express particular appreciation to the members of the
Steering Committee and the Technical Organizing Committee for arranging an
excellent technical program. Our thanks are given to all faculty and staff
of the Joint Institute for Advancement of Flight Sciences (both NASA Langley
Research Center and The George Washington University) who contributed to the
organization of the Meeting. The assistance in preparation for the meeting
and this document of Sandra Jones, Virginia Lazenby, and Mary Torian is
gratefully acknowledged. Our gratitude to the Scientific and Technical
Information Prgrams Division of the NASA Langley Research Center for pub-
lishing these Proceedings is sincerely extended.

Hampton, Virginia 1976 J. E. Duberg
J. L. Whitesides
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Introductory Remarks For A Panel
Discussion Session

on
COMPUTERIZED STRUCTURAL ANALYSIS
AND DESIGN - FUTURE AND PROSPECTS

Lucien A. Schmit, Jr.
University of California, Los Angeles

The renowned numerical analyst, Dr. Richard W. Hamming, has written "The
Purpose of Computing Is Insight, Not Numbers". As we take a look at the past,
present, and future prospects for computerized structural analysis and design,
we would do well to keep this charge in mind.

Huge strides have been made in the development of reliable structural
analysis methods during the past thirty years. A vast array of powerful
structural analysis tools has emerged and found widespread acceptance in
engineering practice. The steady growth and availability of large scale
general purpose digital computers has facilitated the development of rather
general structural analysis capabilities, notably the various finite element
programs. Also, as confidence has grown in our ability to predict the behavior
of alternative designs, there has been a natural tendency to come to grips with
the problems of wider scope that make up the structural design process. As
one looks to the future and asks, what are the prospects, it appears that
many of the new developments envisioned are characterized by an innate desire
to strengthen creative control over the use of computers in structural
analysis and design.

The development of computer programs for structural analysis, particularly
finite-element methods, has been motivated by the need for economical and
reliable prediction of structural behavior. Over the past 15 years, workers
in the finite-element field have given attention to improving the theoretical
foundations and the numerical techniques used. However, even more emphasis
has been placed on increasing problem size, improving generality of configur-
ation and extending finite-element methods to deal with more complex structural
behavior. Mature computer programs for linear static and dynamic analysis of
a rather general class of structures are generally available and widely used
today. Programs capable of handling buckling analysis as well as nonlinear
static and dynamic response also exist, although they are somewhat less
mature. In his remarks, Professor Wilson observes that "new computer programs
with improved accuracy and efficiency will not necessarily be adopted by the
profession unless they solve problems that existing programs cannot." As we
look ahead, it is likely that the growing use of composite materials as well
as the need to treat crack growth and fatigue failure modes will provide
impetus for the development of new programs. Also, as Dr. Stanton suggests,
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it is anticipated that computational models characterizing real composite
materials will become a bridge that helps bring the technology of the materials
scientist to the structural engineer. While large pipeline and parallel pro-
cess computers have not yet had a significant impact on the solution of
structural analysis problems, they are expected to find important application
in large scale transient response problems, nonlinear analyses, and design
optimization studies.

The structural design problem is substantially more involved than the
analysis problem, even if attention is restricted to simple proportioning.
When configuration, material, and topological changes are considered, the
structural design problem becomes very complex and it is not well understood.
Dr. Berke traces the history of automated structural design beginning with the
early structural index work, followed by: the advent of the general nonlinear
programming formulation, the subsequent resurgence of the fully stressed
design method, and the emergence of the discretized optimality criteria
approach. As pointed out by Dr. Card, recent advances in the mathematical
programming approach to structural design have been based on approximation
concepts including design variable linking, deletion of redundant constraints,
and design oriented structural analysis methods. Nonlinear mathematical ‘
programming methods cannot handle thousands of design variables and discretized
optimality criteria techniques have difficulty identifying the set of critical
constraints that will be active at the final optimum design. It is reasonable
to expect that hybrid methods, which synergistically combine nonlinear
mathematical programming methods with discretized optimality criteria techniques
and design oriented structural analysis will emerge in the near future. Looking
further ahead, it is likely that increased attention will be given to config-
uration, material, and topological design changes. Efforts will be made to
gain deeper understanding of the design problems formal structure. Also, as
Dr. Berke suggests, it may be possible to bring artificial intelligence to
bear on the structural design problem through the use of adaptive learning
network ideas.

As we look to the future, many of the developments projected by the panel
seem to reflect a deep innate desire to strengthen creative control over the
use of computers in structural analysis and design. The growth of easy
access computing via simple problem oriented languages used in an interactive
mode with graphic displays leads to greater involvement of the computer system
user. As Dr. Hartung points out, structural engineers will spend more of
their time as software synthesizers who select technical modules from program
libraries and they will phase out of the ad hoc programming activities that
have been so common during the last fifteen years. Software systems generated
by computer specialists, numerical analysts and a few engineers with special
training in modern programming techniques will have to be extremely well-
documented, so that structural engineers will be able to use them while
maintaining creative control. The pressing importance of solving the software
dissemination, standardization, and accreditation problem is emphasized by
Dr. Hartung and Dr. Card. Integrated procedures for interdisciplinary system
design tend to focus attention on the importance of automated data management.
Tt is interesting to note that many of the interdisciplinary system design
procedures reflect the current in series design process that is commonplace
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in industry today. Emphasizing data management, while minimizing change in
the basic design process and the associated organizational structure, tends to
preserve whatever creative control currently exists over the system design
process. Finally, it would seem that the future prospects for minicomputers
and microcomputers in structural analysis, touched on by Professor Wilson,

Dr. Hartung and Dr. Stanton, may also enhance the structural engineer's
opportunity to exercise more creative control over different analysis tasks,
such as nonlinear dynamic response and characterization of actual composite
materials. In closing, let me express my confidence that the barriers to
computerized structural design, so aptly set forth by Dr. Card, will in time
be overcome. As we move forward in the area of computerized structural
analysis and design it may be useful for us to ponder the cryptic words of the
poet T. S. Eliot, who in a very different context wrote, "Where is the wisdom
we have los+ in lnowledge? Where is the knowledge we have lost in information?"
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AUTOMATED STRUCTURAL DESIGN — FUTURE AND PROSPECTS

Laszlo Berke
Air Force Flight Dynamics Laboratory

Structural optimization has been an active area of research for many decades
and has aided generations of engineers to find rational solutions to structural
design problems of ever increasing complexity. There is now a noticeable
lessening of research activity in this field. If this trend persists, it will
unfavorably influence the future prospects of optimization. This will occur at
a time when needs for optimization capabilities will predicably increase in the
wake of ambitious developments in integrated procedures for automated aerospace
vehicle design.

It is usually constructive to recall past achievements prior to assessing
future prospects. New design challenges and new developments in computing
capabilities continually produce new trends which, however, tend to build on
past achievements. We can recall the precomputer era when the "in" thing was to
perform optimization of compression panels with every conceivable geometry.

Most of this work was based on the heuristic optimality criteria of simultaneous
failure modes. Redundant structures were analyzed at that time by various
approximation methods, and their members were manually sized to attain their
respective critical stress levels. Repetitive application of this procedure
was later formalized as the "fully stressed design method", FSD for short.

These two early optimality criteria methods served the designers well at that
time, and in most practical situations continue to do so, even today.

With the early appearance of computers, optimization methodology faced a
new challenge. Relying on the emerging computational capabilities, nonlinear
mathematical programming was introduced in the late fifties as the proper
general framework for all structural optimization problems. Research along
these lines became the new "in" thing during the exciting decade of the sixties.
Research money was relatively abundant and a proliferation of results followed.
One of the most important results was to rethink the basic nature of optimization
problems and of the methods which can successfully solve them. It was conclu-
sively shown that, in general, neither the simultaneous failure modes for
components, nor FSD for redundant structures, resulted in an optimum design.

As computing power increased and the powerful finite element methods became

the most popular analysis tool for redundant structures, an unfortunate but
basic shortcoming of nonlinear programming methods became apparent. The
increasing number of reanalyses required as a function of the number of design
variables rendered them impractical to finite element models that, by the mid-
sixties, routinely consisted of thousands of elements. The discredited FSD

had to be reinstated for strength optimization of large, redundant, finite
element systems, and new, "exact', discretized, optimality criteria methods

had to be introduced for stiffness constraints. After a slow start in the late
sixties, these stiffness-related, discretized, optimality criteria methods
provided a new turning point once again. Now they are widely accepted as the
latest "in" thing for such diverse constraints as displacements, static stability,
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dynamic response, and flutter. Even such exotic new requirements as aeroelastic
tailoring and various control characteristics of flexible, advanced-composite
aircraft are being considered.

One can briefly assess the current state of the art by saying that efficient
mathematical programming methods are available for design problems of virtually
any complexity. However, the number of design variables must be kept reasonable,
either by appropriate modeling or by the nature of the problem. For final
detailed design the problem is not entirely under control. Detailed structural
models use thousands of finite elements, each with more or less independent
size variables. Current practical capabilities for combined strength and
stiffness design are theoretically improper heuristic mixtures of the "incorrect"
FSD and the '"correct'", stiffness-related, optimality-criteria approaches. The
recent advocacy of advanced composites tends to further aggravate the situation.
While immediate needs for optimization are filled by the design teams with
various pragmatic approaches of more or less parochial character, generally
acceptable solutions are lacking for many important problems.

The future holds many new additional challenges. Optimization techniques
in general, and nonlinear programming in particular, will continue to benefit
from increasing computing capabilities which will help them to permeate the
design process deeper and deeper. The emergence of integrated and automated
vehicle design technology, based on ambitiously defined executive data manage-
ment systems, will underscore the need for further automation. This automation
must relate to both the analysis and the redesign process while relying on
efficient optimization techniques.

Integrated analysis and design capabilities, when fully developed, could
result in such voluminous information that it would tax the perceptive
capabilities of human designers despite great versatility of information display.
A higher form of optimization, enhanced with learning capabilities, could be a
useful tool to digest the large amounts of analysis information and "suggest"
design changes., Within the broad area of artificial intelligence research,
considerable practical software and hardware capabilities have been developed
in the particular field of adaptive learning networks. Once such a network is
"trained" to approximate the behavior of a real system, it can be interrogated
in a fraction of the computer time necessary to query the real system. As an
experienced engineer acquires a '"feel" for a particular problem as it progresses,
learning networks are conceived essentially to do the same. Incorporation of
such machine intelligence in future automated structural design will enable the:
engineer of tomorrow to more adequately use his unique human ability — creativity.
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OVERCOMING THE BARRIERS TO
COMPUTERIZED STRUCTURAL DESIGN

Michael F. Card
Langley Research Center

INTRODUCTION

From a research point of view, the prospects for computerized structural
analysis and design appear to be excellent. Computerized analysis is now an
integral part of all major structural engineering projects. There is consider-
able ongoing research on advanced design techniques, in both government and
industry; recently NASA has taken a significant step towards enhancing the use
of computers in design with initiation of the IPAD project (Refs 1 and 2).
However, the development of a major thrust to advance the design state of the
art by automation has been slow. For example, it has taken about six years for
a satisfactory arrangement to be negotiated between government and industry for
IPAD. Thus, it would appear that there are some significant barriers to accep-
tance of computerized design as a national goal.

BARRIERS

Some of the major barriers which I perceive are

THE ALL KNOWING DESIGNER SYNDROME

THE COOKBOOK ENGINEER

MAN'S FASCINATION WITH MACHINES

COSTS

STANDARDIZATION/ACCREDITATION

A facetious illustration of the first barrier is shown in figure 1. One of
the ghosts of the past has been the perception that most of the really serious
design work is done by a clever, experienced designer, a unique individual who
through sheer physical insight is able to master all problems. Unfortunately,
as structural designs have become more and more complex, the single designer
with complete mastery of his structure is a vanishing breed. The size and
complexity of major structural projects.do not permit any such seat-of-the- -
pants designer to make a significant contribution, except in the very earliest
stage of design. Even in the embryonic stages of design, with only his insight,
he is hard pressed to make a convincing technical case for the credibility of
his ideas.
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A second barrier to the acceptance of computerized design is at an opposite
pole from the practical designer. The computer cookbook engineer (see figure
2) can be viewed as a serious threat to any engineering or research organiza-
tion. The reliance on the computer to do design is a terrible temptation to
transfer engineering responsibility and understanding to a machine. Methods to
discourage misapplication and lack of proper solution checking are a constant
concern of most. organizations who perform computerized design activities. To
reduce development costs, there are tremendous pressures to rely on computer-
ized analysis and design and to eliminate qualification testing. But, how do we
ensure that computations are accurate and appropriate?

‘A third barrier is man's fascination with machines. As illustrated in
figure 3, the exposure of engineers with good structural insight to the compu-
ter can be dangerous. The process of transition of the structures engineer to
computer software specialist is suggested. While computer science may benefit
by cross-fertilization, there must remain a hardcore group of structural
specialists who are able to interpret and apply the results of computerized
designs and who may conceivably invent new techniques.

A fourth barrier (common to all current advanced technologies) is the
unknowns associated with costs. As illustrated in figure 4, the resources to
perform structural design in the aircraft industry have been steadily increas-
ing. The hope of automated design is that the computer will reduce manhours
expended in design and that computer hour costs will not increase enough to
offset the manhour cost reduction. If the computer design process is too com-
plex, however, a net cost reduction will not be realized, even though the depth
and accuracy in which real-time design cycles can be executed will be signifi-
cantly increased.

The cost barrier is complicated by government experiences with computer-
jzed analysis development. Recent NASA experience with NASTRAN and FLEXSTAB
suggests that the government must modify its future role in the support of
major computer code developments. As illustrated in figure 5, the pattern for
development costs will include government support of initial development costs
including software design, coding, early debugging, testing and maintenance;
however, after the code is sufficiently matured, it will be up to a community
of users to continue its financial support. Lack of commitments by user
groups to assume this financial burden will necessarily slow the pace
of advanced computerized capability.

The final barrier is the issue of standardization and accreditation. As a
member of the government, I recognize the need for both elements, but I am
somewhat sceptical of the process (e.g. fig. 6) by which it can be accomplished.
Once it is admitted that such a process is needed, a tremendous power struggle
for the right to control the process is created. The protagonists come from
industry, university and government. They range from the industrialists who
are fighting to retain competitive edges in computer hardware ‘and software
systems to the technical societies and government agencies who are struggling
to be recognized as the all-powerful certifying agent. The addition of stand-
ardization and certification requirements will of necessity retard the
development pace of automated design tools.
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PROSPECTS
I believe that the barriers to general acceptance of automated structural
designs can be overcome. As illustrated in figure 7, significant progress is
being made in aerospace applications of computerized sizing with very accurate
analysis becoming both feasible and cost: effective.
The keys to overcoming the barriers already mentioned are as follows:

FUTURE ATTRACTIONS

e DESIGNERS ON SCOPES RATHER THAN BOARDS
e BRAINWORK RATHER THAN DOGWORK
PREREQUISITES

® DESIGN PROBLEMS OF SUFFICIENT COMPLEXITY
® NEED FOR REDESIGN SPEED
CENTRAL STEPS

® COMPUTERIZED DESIGN TRAINING IN UNIVERSITIES AND INDUSTRY

e SERIES OF STRUCTURAL TESTS TO DEMONSTRATE EFFECTIVENESS
OF AUTOMATED DESIGN

® MOBILITY IN TECHNOLOGY TRANSFER THROUGH STANDARDIZATION

To attract young people to the structural design profession, it seems
1ikely that man's fascination with machines can be exploited to eliminate the
drafting board. For the existence of such an advanced design capability, how-
ever, there are two prerequisites. Foremost is the challenge to design a struct-
ure or vehicle of sufficient complexity to warrant such techniques. As an
example, development of advanced supersonic cruise aircraft designs have offered
a greater stimulus to computerized design development than subsonic transport
designs because of greater technical complexities (especially in aeroelastic
design) and more demanding payload requirements. A second prerequisite is the
urgency for speed in the design cycle. Generally design cycle speed require-
ments are generated by competition, mission and market targets, and design time
costs; however, in economically depressed industries, the tendency is to
stretch out vehicle development times.

Finally, I suggest three central steps which might be taken to overcome
resistance to computerized structural design. First, to eliminate the cook-
book engineer, a serious attempt should be made to properly train engineers in
the use of the computer for design. This is particularly important in uni-
versity training where the ethics of .using the computer can be taught. Second,
to address the fear of fallibility of computer-generated designs, there should
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be a series of design and structural test activities whose purpose is to vali-
date the credibility of computer-generated designs. Finally, the cost-
effectiveness of computerized design systems can be achieved with selective use
of standardization to permit some technology transfer of structural design
techniques to a wider range of industries.
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Figure 2.~ The computer cookbook engineer.
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COMPUTERIZED STRUCTURAL ANALYSIS AND DESIGN -~ FUTURE AND PROSPECTS

Richard F. Hartung
Lockheed Research Laboratory

OPENING REMARKS

The analysis and design of structures by computer methods will be influ-
enced in the future by new developments in computer hardware and software and by
the development of new analysis capability. These developments will tend to
relieve the engineer of much of the programming activity in which he now en-
gages and will provide him with a very powerful array of analysis tools that
allow him to solve a greater variety of problems. Much of the routine data
handling activity that now occupies the engineer's time will be taken care of
by data managers or eliminated by compatible interdisciplinary engineering
analysis software. In short, engineers will be able to spend more time doing
engineering work.

Software technology is changing rapidly. Ad hoc programming techniques
that have been used in the development of much of the present-generation, struc-
tural-analysis software are no longer satisfactory for this purpose. More for-
mal coding procedures and new programming languages will be used to facilitate
program development, checkout, application,and maintenance. Future software
will be systems oriented with extensive libraries of technical modules, matrix
utilities, and driver programs that communicate via a common data base or a
super executive program., Data base management techniques specifically oriented
to the large files of numerical data arising in scientific analysis will be in
common use. More attention will be given to program documentation and configu-
ration control to insure that software will be perpetuated as personnel changes
occur.

Most structural engineers will have neither the inclination nor the necessary
training to plan and program good software systems. These tasks will be done
by computer specialists, numerical analysts, and engineers with extensive train-
ing and experience in the use of modern programming techniques. The structural
engineer will no longer have to be a software developer; instead he will be a
software synthesizer who selects modules from program libraries and executes
them as required to solve the problem at hand. Although he may know very little
about computer programming, he will have available to him a very powerful com-
puter capability that he can operate with a simple problem-oriented language.
Furthermore, as various engineering organizations begin to share the same analy-
sis system there will be much more interaction between various engineering
organizations (e.g., structures, thermo, aero, loads, etc.) during the design
process,
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The problem of software dissemination has not yet been satisfactorily re-
solved. While millions of dollars in public funds have been spent in recent
years on software development, relatively little of it is readily available 'to
the public. Several questions need to be answered. (1) How can a structural
engineer with a problem determine what computer programs are available to solve
his problem? (2) How can the appropriate program be obtained or used? (3) Who
will provide technical assistance on the use of the program? (4} How will the
costs of the dissemination and consultation be handled? New approaches to this
problem will be explored in the future. Some of the current structural analysis
programs are available from computer utility companies on a surcharge basis. An
increasing number of industries, that previously relied on crude approximate
techniques or simply ignored structural analysis altogether, are beginning to
use these structural analysis programs on a routine basis. For example, one
manufacturer of office reproducing machines has begun to use computer programs
to perform dynamic analysis of its machines in order to reduce vibrations and
thus improve the sharpness of the reproductions produced by the machine. In the
future, regulatory agencies may require that structures in which public safety
is involved be designed and analyzed using computer programs that have been cer-
tified. This could have a significant affect on design procedures.

Minicomputers and microcomputers will continue to become more powerful and
less expensive. These machines will assume the role of interactively handling
many pre- and post-processing functions that are now done in a batch mode on the
macrocomputers. One interesting possibility is that special purpose minicompu-
ters will be developed to execute specific structural analysis programs. Under
this scheme, one could obtain a turn-key structural analysis capability includ-
ing software, hardware, and documentation.

More powerful macrocomputers presently under development will make avail-
able to the analyst the low cost, high capacity, high speed computer needed to
conduct transient-response and nonlinear analyses or to perform design and optimi-
zation studies. Such problems require that the governing equations be solved a
large number of times in order to obtain a solution. Currently, the cost of
these analyses are prohibitive when applied to large structural models needed
to represent real structures.

As the analyst's capability to solve complex problems (e.g., those involv-
ing nonlinear phenomena, transient response, or buckling) is increased, so will
be the amount of judgment that he is required to exercise. Selection of the
various solution parameters, solution strategy, and discretized structural model
requires extensive experience. To guide the analyst in this kind of problem,
preprocessors could be developed which, when given data that describes the
structure and type of analysis to be performed, would provide the analyst with
information to guide him in making a mathematical model and selecting an appro-
priate solution strategy. The preprocessor could even automatically set many
of the solution parameters in the computer program in much the same way that an
automatic camera selects exposure parameters based on light meter readings. The
experienced user could override these settings, of course, if he felt it appropri-
ate. Such capability would enable the analyst to conduct a more accurate analy-
sis in less time and with lower cost.
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To be prepared to function effectively in the environment of the future,
engineering students will have to be given a balanced curricula that provides
both a good background in fundamentals of mechanics and familiarity with con-
cepts such as discrete representation of structures, matrix algebra, and numeri-
cal analysis that are fundamental to computer analysis of structures.

In summary, the structural analyst will surrender some autonomy in the
area of software development and utilization. More formal programming and data
format procedures will be required. However, the analyst will have available
to him powerful, system-oriented, engineering analysis programs that will enable
him to solve complex interdisciplinary problems and relieve him of much of the
routine noncreative work with which he must now contend.
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COMPUTER SIMULATION OF COMPOSITE MATERIALS
FOR STRUCTURAL DESIGN

Edward L. Stanton
Prototype Development Associates, Inc.

As almost anyone involved in structural design today will tell you, the use of
composite materials for primary structure tends to make structural response more
difficult to predict. The reasons for this increased difficulty range from problems in
material characterization to problems in predicting the complex load interactions that
can occur among constituents during failure. This is not to say that simple effective
modulus methods should not be used when appropriate, obviously they should. How-
ever, even in this situation it may require more than the rule of mixtures to determine
the effective moduli for a representative volume element of the material.

The point of this preamble is to indicate yet another role that the computer is
assuming in structural design; namely, a bridge that helps bring the technology of the
materials scientist to the structural engineer. This is an area of considerable activity
at all levels, and it seems clear that the role of the computer will grow as computational
models are developed that better characterize real composite materials. The models
now available are typically used in a preprocessor mode to characterize statistically
homogeneous stress-strain behavior, and in a postprocessor mode to predict margins
of safety or survival probabilities. Also, computer data files are becoming the
archive source for materials test data as it is developed for many new composites thus
replacing the traditional handbook.

The mode in which the computer is used to fill the roles just described will
more than likely change with the new minicomputers and other hardware developments.
Computational models in the future may use specially designed macroprocessors for
digital simulation of constituents. There are several factors that make computer simu-
lations of this type attractive: one, the rapid advances in electronic chip technology
make it economically feasible, and two, the triaxial as well as statistical nature of the
materials behavior make an all software simulation expensive. To illustrate this point,
it currently requires almost as much computer time to calculate survival probabilities
for some 3D materials given the state of stress and strain as it does to compute the
effective modulus stress-strain solution for the structure., While this may appear
excessive, it reflects the computational difficulty that can occur when material behavior
is characterized by a complex microstructure.
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THE FUTURE OF COMPUTERIZED STRUCTURE ANALYSIS

Edward L. Wilson
University of California, Berkeley

OPENING REMARKS

The solution of problems in the field of computational mechanics has pro-
gressed to the point in time where general purpose computer programs are used
for the majority of problems. As a result of the large investment in develop-
ment effort and the familiarization of many users with a particular code, new
computer programs for the solution of linear structural mechanics problems have
not emerged in the past few years. However, it is reasonable to state that a
large portion of every major computer program is obsolete and should be modi-
fied if optimum accuracy or efficiency is to be realized. Of course there are
several reasons why these general purpose codes are not being modified or
significantly extended. First, some codes are operated on a royalty basis;
therefore, there is little motivation to increase their efficiency. Second,
many codes are so large and have been developed over such a long period of time
that it is practically impossible to make basic changes. Third, the basic
architecture of the code will not permit a change in the basic numerical ap-
proach to a problem. It is my observation that major new numerical techniques
will only be used in general purpose programs if a completely new program is
developed. It is also my opinion that new programs will not necessarily be
adopted immediately by the profession unless they solve problems that existing
programs cannot solve. This is because the user, in general, will not risk
change to a new, unfamiliar program for the sake of accuracy and efficiency
only.

While new capability is presently the only reason for the use of a new
computer program, within the next few years the development of new, inexpensive
computer hardware may be a compelling reason to change computer programs. The
development of parallel and pipeline large expensive computers has not had a
significant impact on the solution of problems in computational mechanics.
However, minicomputers (less than $50,000 with input, output and low speed
storage) are currently being used very effectively for the solution of medium-
size problems. In my opinion, the most significant change is yet to come.
Within the past year several different types of micro-computers (only 8 to 16
bits) have been developed. The present prices of these small programmable
computers, complete with local storage and input-output interfaces, range from
$200 to $500. If a system of these micro-computers is specifically designed
for the solution of finite element systems, it may be possible to solve large
dynamic nonlinear systems at a minimum of cost. In light of the new computer
hardware developments the purpose of my present research is to re-examine sev-
eral traditional numerical methods and to introduce some new numerical approaches
for both linear and nonlinear analysis.
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ON THE STABILITY OF A CLASS OF IMPLICIT ALGORITHMS
FOR NONLINEAR STRUCTURAL DYNAMICS

Ted Belytschko
University of Illinois at Chicago

SUMMARY

Stability in energy for the Newmark B-family of time integra-
tion operators for nonlinear material problems is examined. It
is shown that the necessary and sufficient conditions for uncondi-
tional stability are equivalent to those predicted by Fourier
methods for linear problems.

INTRODUCTION

In this paper, stability in energy for the Newmark family
(ref. 1) of time integration operators is examined., Stability for
these operators was considered in the original paper of Newmark,
who used essentially Fourier techniques which are strictly appli-
cable only to linear problems. Belytschko and Schoeberle (ref. 2)
have shown the unconditional stability of the particular form of
the Newmark B-operator that corresponds to the trapezoidal rule
(y=%, B=%) for nonlinear material problems by energy methods.
Hughes (ref. 3) extended this proof to the range of parameters
(vy=%, B2%). 1In this paper, it is shown by generalizing the defini-
tion of discrete energy, sufficient conditions for unconditional
stability in energy on both y and B can be obtained. These condi-
tions are equivalent to the necessary conditions for the uncondi-
tional stability of the Newmark operators in linear problems, so
the conditions obtained herein are necessary and sufficient for the
unconditional stability for nonlinear material problems.

PRELIMINARY EQUATIONS

The equations will here be presented in the formalism of the
finite element method. As indicated in Belytschko, et al (ref. 4),
the spatial discretization in finite difference methods is ba-
sically identical, so the choice of finite element notation is
only a matter of convenience, not a restriction on the proof. The
equations will only be outlined; details may be found in Zienkiew-
icz (ref. 5).

The fundamental step in any spatial discretization, which is
often called the semidiscretization;is a separation of variables
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in the form

ulx,t) = ¢(x) a'® (v) (1)

where x is the Cartesian coordinate, t the time, u the displace-
ment field, ¢ the shape functions, and d(e) the nodal displacement
of element e. The strains can then be related to the nodal dis-
placements by

€ = Eé(e) = _B_ E(e) g (2)

where B consists of derivatives of the shape functions and L(e) is

the connectivity matrix. The discrete equations of motion are
then

Ma+ f=p (3)

where M is the mass matrix, a the nodal accelerations (second de-
rivatives of d with respect to time), p the external nodal forces
and f the internal nodal forces, which are given by

£=2_Ii<e):r:f_(e) _ z (e)T/ 5T av (4)

e v(e)

Equations (3) and (4) can be derived from the principle of virtual
work with the inertial forces included in a d'Alembert sense; see
for example Belytschko, et al (ref. 6).

We define a discrete internal energy by

UI+1 = Up + g _{;(e) EI |:(l—u)gI + Ug—I+l_J av (5)

where upper case subscripts denote the time step and A denotes a
forward difference

Aer = 141 T & (62)
and

02 pus1l (6b)
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When u=%, eg. (5) represents a trapezoidal integration of the non-
linear stress strain curve, while u=0 corresponds to Euler integra-
tion.

By means of egs. (2) and (4), eq. (5) can also be written as

Up,y = Up + % 8 [(1-w £ + uf (7)

I+1 I —I+l]

We require that the discrete internal energy be positive definite,
so that

I
T g

J=1

[(1-w)o; + wog,; 120 (8)

The kinetic energy T is given by

TI =

Ny

v TM (9)

[<

I I

where Vv are the nodal velocities (first derivative of d with res-
pect to time) .

The Newmark difference formulas are

= v_ + At [(l—y)gI +

Yi+1 T Y5 (10)

var,]

d =d; + Aty + at? [-Bra; + (11)

9141 B-511+1]

When B:>O, these equations are implicit, and hence for nonlinear
materials, the solution of a nonlinear system of equation is
necessary. The exact solution of the nonlinear system of equations
at each time step is not possible; at each time step there will be
an error E%rr given by

err _ - _ :
_f.I - EI _f..I MEI (12)
We define an energy error criterion
T err err] _
ad] [(1mw 2277+ uefTT || < e (o + 1)) (13)

where e is a small constant and require that the solution of the
nonlinear equations at each time step satisfy this criterion.
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PROOF OF UNCONDITIONAL STABILITY

We will now show that the error criterion, eq. (13), is a
sufficient condition for the unconditional stability in energy of
the Newmark integration formulas for y2%, B2v/2. Stability in
energy is described in Richtmyer and Morton (ref. 7) and has pre-
viously been used for the derivation of stability conditions for
the solution of linear problems by the Newmark f-method by Fujii
(ref. 8).

The demonstration of unconditional stability in energy requires
that it be shown that a positive definite norm of the solution is
bounded regardless of the size of the time step. As pointed out
in reference 7, the norm need not be the physical energy, though
in many cases it is. For the purposes of this proof, we define
the norm by

S. = T_ + UI + (28—y)§._ITyl_i (14)

I I I

Because of the requirement of eqg. (8), Uy is positive definite,
whereas the positive definiteness of the mass matrix M assures the
positiveness definiteness of the remaining two quantities if

2B 2 vy (15)

Stability in energy is then assured if we can show that Sy is
always bounded, i.e. that

< *
SI+l S (l+e )SI (16)

where e* is an arbitrarily small quantity. The interpretation of
the condition of egs. (14) and (16) is as follows. Provided that
the discrete internal energy is a monotonically increasing func-
tion of the displacements, the boundedness of St implies that the
velocities and displacements are bounded, which corresponds to the
notion of stability.

The proof of stability then consists of deducing eq. (16) from egs.

(7) to (11) and the homogeneous formof eq. (3). Fromegs. (9) and (10),
it follows that
_ T
Trep = Tp f At v M [(-v)ag + vag,]

2 (17)
At T T
+ == [@-var” + vap M [A-va; + vay,]
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SO

T 2 T 2 T ]
= -1 Lo
Tri1 T, + [AQI + AT (B 2Y)§I + AT (%Y B)EI+1
(18)
M‘:(1'\()531 * Y—Ei1+1]
Thus if we let
Y = U (19)
then egs. (7) and (18) yield
T
Trey ¥ Uy = Tp ¥ Up * 89 [(l'Y) (May+ £,)
2 N P S T
*oyMag, + £1+1)] * At [(B LSRR B)31+1]1”_’I
(l-y)a. + va ]
[ I I+1 (20)

The second term on the right hand side of eq. (20) corresponds to
the error in energy as defined by eq. (13), and the last term can
be rearranged so that we obtain

< 2 - T -
Trep * Upep - (LFe)(Tp3Up) +08(y=28) (a7  Map,; - a;May)
2 T T
+ Aot (y-%) (y=28) (a;; - a7 M (a;,, - 2a;) (21)

The last term on the right hand side of eqg. (21) is negative semi-
definite if

Yy 2 % and 28 2 v (22)

or if both of the above inequalities are reversed. However, if the
inequalities are reversed, as can be seen from egs. (14) and (15),
the norm St is not positive definite. Hence, only the conditions
given by eg. (22) are pertinent. Under these conditions, the in-
equality of eq. (21) applies even if the last term is dropped. The
remaining terms then yield eq. (16).
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DISCUSSION AND CONCLUSIONS

Several remarks should be noted in applying these results to
computations. First, the stability hinges on the achievement of a
solution in each time step that satisfies eq. (13). The conver-
gence of solution schemes, such as the modified Newton Raphson
method, cannot be assured, and is therefore the primary obstacle
in obtaining stable solutions. The difficulties are particularly
severe in elastic-plastic problems if the tangential stiffness
method is used whenever unloading takes place over a large part of
the mesh. '

It is also not clear whether the form of the error criterion,
eq. (13), is suitable for very fine meshes. Numerical experiments
indicate that it becomes increasingly difficult to satisy eq. (13)
for finer meshes, for although the criterion appears to be mesh-
independent in that the right hand side increases with the size of
the physical problem, the right hand side does not vary as a mesh
is refined. Furthermore, in very large meshes there is a possi-
bility of cancellation of errors, i.e. positive error energy
transfer in one portion, with negative error energy transfer in
another portion. This can be avoided by placing the absolute
value within the summation.

Results have been reported for a special case of this operator
(y=%, B=%) in reference 2. Both material and geometric nonlinear-
ities were included in those problems. However, the proofs given
here and in reference 2 require the absence of geometric nonlin-
earities; if geometric nonlinearities are included, eq. (5) does
not imply eq. (7), for in geometrically nonlinear problems AB does
not vanish. Hence, as shown in reference 9, in geometrically non-
linear problems, energy transfer is associated with the rotation
of a stressed member: this effect results in the generation of
energy if the stress is tensile and is hence destabilizing under
those conditions. In many structural dynamics problems, the total
rigid body rotation that takes place is insufficient for this
energy generation to be significant. However, test problems have
been devised where the energy error is so large that for practical
purposes the computation can be considered unstable.

Finally, we comment on some experience with the requirement
of eq. (8). This condition requires that the numerical integra-
tion of the internal work always yield a positive quantity. 1In
elastic-plastic materials and other strongly dissipative materials,
this condition poses no problems. However, when the stress is a
single-valued function of the strain, eq. (8) can easily be
violated in cyclic load paths. However, numerical experiments do
not indicate that violation of eq. (8) results in any catastrophic
failure of the computation.
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A REVIEW OF SUBSTRUCTURE COUPLING METHODS FOR DYNAMIC ANALYSIS*

Roy R. Craig, Jr. and Ching-Jone Chang
The University of Texas at Austin

SUMMARY

This paper assesses the state of the art in substructure coupling for
dynamic analysis. A general formulation, which permits all previously de-
scribed methods to be characterized by a few constituent matrices, is developed.
Limited results comparing the accuracy of various methods are presented.

INTRODUCTION

Analysis of the response of a complex structure to dynamic excitation is
usually accomplished by analyzing a finite element model of the structure.
Since the finite element model may contain thousands of degrees of freedom, and
since the structure may consist of several substructures which are designed and
fabricated by different organizations, it is desirable to have a method of
dynamic analysis which permits the number of degrees of freedom of the dynamic
model to be reduced and which also allows as much independence as possible in
the design and analysis of substructures. The names substructure coupling and
component mode synthesis have been applied to the process of partitioning a
structure into substructures, or components, and describing the physical dis-
placements of the substructures in terms of generalized coordinates which are
the amplitudes of predetermined substructure modes. A number of substructure
coupling methods have been proposed. The goal of most of these has been to
permit analytical determination of system natural modes and frequencies from
given finite element models of the structure. To a lesser extent, the use of
experimentally-determined substructure data to synthesize mathematical models
of structures has been considered.

One classification of substructure coupling methods is based on the condi-
tions imposed at the interface between one substructure and the adjoining sub-
structures when mode shapes are determined for the substructure. One class is
called fixed-interface methods, and a second is called free-interface methods.
Related to the Tatter is a class which may be called loaded-interface methods.
Finally, some consideration has been given to permitting arbitrary interface
conditions which may be a combination of the above three types. Such a method
may be called a hybrid method.

The following classes of modes are used in defining substructure general-
ized coordinates: normal modes, constraint modes, attachment modes, and rigid-
body modes. These are defined in greater detail in a later section of the
paper.

*This work was supported by NASA Grant NSG 1268.
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SYMBOLS

The principal defining equations are given in parenthesis after the
definition of each symbol.

interface equilibrium matrix (29)
displacement compatibility matrix (29)
combination of A and B (33)
substructure force vector (1)
equivalent force vector (15)
flexibility matrix (19)
substructure stiffness matrix (1)
system stiffness matrix (30, 37, 45)
Lagrangian (26)
substructure mass matrix (1)
system mass matrix (30, 37, 45)
substructure generalized coordinate vector (22, 25)
system generalized coordinate vector (31)
inertia relief matrix (14)
substructure kinetic energy (21)
substructure transformation matrix (22)
system transformation matrix (31, 36)
substructure potential energy (21)
substructure physical coordinate vector (1)
Lagrange multiplier vector (26)
free-interface or loaded-interface normal mode matrix (7)
substructure generalized stiffness matrix (24, 25)
»A substructure eigenvalue, eigenvalue matrix (2, 3)
substructure generalized mass matrix (24, 25)
Lagrange multiplier vector (26)
generalized coordinate (27)
Lagrange multiplier vector (38)
fixed-interface normal mode matrix (4)
modified attachment mode matrix (20)
unmodified attachment mode matrix (13, 17)
constraint mode matrix (11)

EXE O QM ST A O3 XC'\?—-I—V;U.Q'U EErrAR>XOTMM-HO W I
w——

Subscripts and Superscripts:

dependent coordinates (32)

non-interface (interior) coordinates (1)
interface (junction) coordinates (1)

kept coordinates (18)

linearly-independent coordinates (32)

rigid-body modes, temporary constraints (14, 15)
unrestrained coordinates (15)

o o xG. A
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HISTORICAL REVIEW

The following is a brief review of the development of a number of sub-
structure coupling methods:

Hurty (refs. 1,2) developed the first substructure coupling method capable
of analyzing substructures with redundant interface connection. Fixed inter-
face normal modes, rigid-body modes and redundant constraint modes are used
to define substructure generalized coordinates.

Bamford (ref. 3) introduced attachment modes, and developed a hybrid
substructure coupling method.

Craig and Bampton (ref. 4) and Bajan and Feng (refs. 5,6) modified Hurty's
method by pointing out that it is unnecessary to separate the set of constraint
modes into rigid-body modes and redundant constraint modes.

Goldman (ref. 7) and Hou (ref. 8) developed methods which employ free-
interface substructure normal modes. They differ in the technique used to
effect coupling of the substructures, as will be explained in a subsequent
section.

Benfield and Hruda (ref. 9) introduced two new concepts: they employed
Guyan reduction (ref. 10) to determine interface loading, and they used a
coupling strategy which differs slightly from strategies used by previous
authors. These features serve as the basis for four methods described by Ben-
field and Hruda: free-free, constrained, free-free with interface Toading, and
constrained with interface loading.

MacNeal (ref. 11) developed a hybrid method which allows some substructure
interface coordinates to be constrained while others are free. He also sug-
gested the use of statically derived modes to improve the representation of
the substructure motion.

Goldenberg and Shapiro (ref. 12) employed a method similar to Hou's, but
provided for arbitrary mass loading of interface points.

Rubin (ref. 13) extended MacNeal's method to include second-order residual
effects of modes truncated from the final set free-interface substructure
normal modes.

Kuhar and Stahle (ref. 14) -introduced a dynamic transformation which
approximates the effect of modes which are truncated from the final set of
system generalized coordinates.

In a recent paper Hintz (ref. 15) describes two statically complete inter-
face mode sets which he calls "the method of attachment modes" and "the method
of constraint modes." The former set is combined with both free-interface
normal modes and with fixed-interface normal modes to form system coordinates.
The latter is combined only with fixed-interface normal modes.

In reference 16 Craig and Chang describe three methods for reducing the
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number of interface coordinates in the final system equations obtained by the
Hurty method or the Craig-Bampton method. In reference 17 Craig and Chang
provide examples of substructure coupling based on the methods of MacNeal and
Rubin.

The previous references are primarily concerned with the use of substruc-
ture coupling methods in the analytical determination of modes and frequencies
of complex structures. Several studies, however, explore the use of experimen-
tal data as input to coupling procedures. The following studies are of this
nature:

Klosterman's thesis (ref. 18) provides a comprehensive study of the exper-
jmental determination of modal representations of structures including the use
of these models in substructure coupling. In reference 19 Klosterman treats
substructure coupling by two methods which he calls "component mode synthesis"
and "general impedance method" respectively. The former closely parallels
Bamford's work. In reference 20 Klosterman and McClelland introduce "inertia
restraint" and outline a coupling procedure that appears to be especially
suited to coupling two substructures where one is represented by modes and the
second by a finite-element model.

Kana and Huzar (refs. 21,22) developed a semi-empirical energy approach
for predicting the damping of a structure in terms of damping of substructures.

Hasselman (ref. 23) employs a perturbation technique to describe substruc-
ture damping and discusses, in a general way, coupling of substructures using
either free-interface modes or fixed-interface modes.

Two symposia on the topic of substructure coupling have been held (refs.
24,25). Survey papers of particular importance, which were presented at these
symposia, are references 26 and 27.

A GENERAL FORMULATION OF SUBSTRUCTURE COUPLING FOR DYNAMIC ANALYSIS

The substructure coupling methods mentioned in the preceding section may
be described by a single comprehensive formulation. Differences in the methods
result from the use of different mode sets to describe substructure generalized
coordinates and different methods of enforcing compatibility of substructure
interfaces. We will first define the mode sets used in representing the sub-
structure physical displacements in terms of substructure generalized coordi-
nates. Then, using the Lagrange multiplier method, we will show how enforce-
ment of compatibility at substructure interfaces leads to system equations of
motion. Finally, the vectors and matrices which define the various methods
are tabulated.

Definition of Mode Sets

The physical displacements of each substructure are represented in terms
of substructure generalized coordinates through the use of various "assumed
modes," including normal modes of the substructure and certain static deflec-
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tion modes.

The equation of motion of a substructure, when connected to other sub-
structures and executing undamped free vibration, may be written in the form

.. omeo]% x.)% ke T® (xG 0%

11 1] 1 + 11 13 1 _ (-l)

m.. m.. X. k.. .. X. f.
J1 JJ J J1 kJJ J J

Fixed-Interface Normal Modes

Fixed-interface normal modes are obtained by setting xj = 0 and solving

for the free-vibration modes of the substructure. Equation\(1) reduces to the
eigenvalue problem

(K »

- )2 =
ii 7 A mii) X: =0 (2)

i
The resulting substructure eigenvalues (frequencies) form a diagonal matrix
— . 2 2 2
A = diag (x] A5 e ANi) (3)

and the corresponding normalized eigenvectors (mode shapes) form the modal
matrix

where Ni is the total number of substructure interior coordinates.

Free-Interface Normal Modes; Loaded~Interface Normal Modes

Free-interface normal modes are obtained by setting fj = 0 in equation (1)
and solving for the resulting modes and frequencies of the substructure. Thus,

(k - 2*m) x =0 (5)
The matrix of eigenvalues is
- s 2 42 2
= diag (k] VIR xN) (6)
where N = Nj + Nj is the total number of substructure degrees of freedom.

Since the structure may be unrestrained, there may be Ny, rigid-body modes. The
normalized eigenvectors form the modal matrix

%1 %2 - - - By 7
ejN
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Several methods (e.g., refs. 9,12) employ loaded-interface normal modes.
These are obtained by augmenting the interface mass and/or stiffness in equa-
tion (5) to give

.. k.. m.. m,. X. 0
i1 ij ] _ye | i N ] LR (8)
.. k.. + k.. .. ..+ om.. .
kji o (kg kgs) myg o (myg ¥ myy) X3 0
Ejj and ﬁjj are the interface "loading" matrices. The symbol © will be used

for the modal matrix corresponding to equation (8).

Constraint Modes

To complement fixed-interface substructure normal modes a set of con-
straint modes may be employed (e.g., refs. 2,4). A constraint mode is defined
by imposing a unit displacement on one physical coordinate and zero displace-
ment on the remainder of a specified subset of the substructure physical coor-
dinates. The procedure employed to obtain constraint modes is equivalent to
applying a Guyan reduction to all interior coordinates; i.e., the mass is
neglected in the top row-partition of equation (1) and unit displacements are
imposed successively on all junction coordinates giving

[k,

V..
ij | _
i Kiyl =0 (9)

I..
JJ

Thus, the N; constraint modes which form the columns of the constraint mode
matrix ¥ are obtained by solving the (multiple) static deflection problem

K.. V.. = =k.. (10)

Then,
v, .
y=| W (11)

If the substructure is unrestrained, ¥ will contain N, linearly indepen-
dent rigid-body modes. As noted in reference 4, constraint modes and fixed-
interface normal modes are orthogonal with respect to the stiffness matrix k.

Attachment Modes
Attachment modes are "static" modes which may be used to complement free-
interface substructure normal modes (e.g., refs. 3,11,15,18). An attachment

mode is defined by imposing a unit force on one physical coordinate and zero
force on the remainder of a specified subset of substructurg_ghysica] coordi-
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nates. Attachment modes will be described first for restrained structures
(for which k is non-singular) and then for unrestrained structures.

Attachment modes for restrained substructures.-Attachment modes for a
restrained substructure are obtained by solving the multiple static deflection
problem

= (12)

(13)

Attachment modes can be expressed as linear combinations of free-interface
normal modes. However, in a later section when the normal mode set is trun-
cated, the attachment modes will be modified so that they are orthogonal to the
kept normal modes. The modified attachment mode set will be called X.

Attachment modes for unrestrained substructures.-For an unrestrained sub-
structure, attachment modes may be obtained by using rigid-body inertia forees
to equilibrate applied forces and by temporarily imposing a set of Ny nonredun-
dant constraints. Let O, be the set of Ny (normalized) rigid-body modes of the
substructure and let

_ T
R=1 - mo,. O, (14)

be the inertia relief matrix (ref. 15). Then, the attachment modes may be

obtained from

_ —_ o - - —

krr kru krj 0 0 Frj

kur kuu kui Xuj 0 = Fuj (15)
. . L IX. . F.

Moe e Mgl Pl el [

where r stands for the Ny restrained interior coordinates and u stands for the

Ny = Ni - Ny unrestrained interior coordinates.

From equation (15)
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(16)

Finally,

(17)

>< 1
11
>< |

uj
Ji
L .

Rigid-body modes may be removed from the X matrix by premultiplying it by RT.

Truncation of Mode Sets

One of the most significant features of substructure coupling techniques
is that they permit the number of degrees of freedom of a system to be reduced
in a systematic manner through truncation of the mode sets which define the
generalized coordinates of the system. Hintz (ref. 15) has provided a compre-
hensive discussion of truncation of mode sets. Although truncation is usually
accomplished by elimination of some coordinates associated with substructure
normal modes (e.g., ref. 26), truncation may also be associated with other
coordinates such as constraint mode coordinates (e.g., ref. 16). Attention
will be confined here to the former, i.e., truncation of normal mode coordi-
nates. The subscript k will be used to denote the columns of & or © which are
kept. For example, the Ny modes which are kept form the columns of Oy, where

= | Tk (18)

The diagonal matrix of corresponding eigenvalues will be denoted by Akk‘

As noted previously, attachment modes can be expressed as linear combina-
tions of the free-interface normal modes. However, when the normal mode set is
truncated, the attachment modes can no longer be represented in terms of Ok. On
the contrary, it is possible to modify the attachment modes so that they are
orthogonal to the modes in ©¢ (e.g., see refs. 13,17). This will be illus-
trated here for attachment modes of a restrained substructure.

Note, in equation (12), that the columns of X correspond to columns of the
flexibility matrix k~!. The contribution of the kept normal modes to this
flexibility matrix is given by (see ref. 17)

=9, A ol (19)

G = O Mk O
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The contribution of the modes in @k to X can be removed from X leaving
_ 3 -1 T
X=X -0 Ay Osp (20)

Energy Expressions for Substructures; Coordinate Transformation

The derivation of system equations of motion will be based on Lagrange's
equations of motion with undetermined multipliers. Expressions for kinetic
energy and strain energy of the substructures are required. These will be
given first for substructure physical coordinates and then in terms of sub-
structure generalized coordinates.

The kinetic energy and potential energy of a substructure are given by

1T
T-= 5 X

respectively. The substructure physical coordinates, x, may be expressed in
terms of substructure generalized coordinates, p, by the coordinate transfor-

mation
1P (22)

When the above coordinate transformation is inserted into equations (21), the
substructure generalized mass and stiffness matrices are obtained. Thus,

mx ., U= %—xT K x (21)

x =T

T = —-5T pnp o, U %‘DT K P (23)

where
T T
Ty mT, , k=T kT, (24)

=
n

Substructure Coupling; System Equations of Motion

To illustrate coupling of substructures to form a system, two substruc-
tures, o and B, will be employed. Let

(25)

The substructure generalized coordinates are not all independent but are
related by force equilibrium and displacement compatibility at substructure
interfaces. These relationships may be expressed by the equations

Ap=0 , Bp=0

respectively. Then, a Lagrangian may be formed as follows:
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L=%-|5Tur3-jl_-pTl<p+nTAp+vTBp (26)
The system equations may be obtained by applying Lagrange's equation in the
form
d ([sL oL _
&’[aan] "% T 0 (27)

where £, can refer to Pps Ny OF V- Then equations (26) and (27) may be

combined to give
pup+kps= ATn + 8Ty (28)
together with the constraint equations
Ap =0 , Bp =0 (29)
In the works cited previously, two basic approaches have been employed for
solving the coupled equations contained in equations (28) and (29). Both lead
to system equations of the form
Mg+Kq = 0 (30)
The method used by most authors will be referred to as the implicit

method. It involves the use of a coordinate transformation Ty to replace the
set of dependent coordinates, p, by a set of Tinearly independent coordinates

q. Thus,
p=T,4q (31)

Let p be partitioned into dependent coordinates, pq, and linearly independent
coordinates, py, as follows:

p = (32)

A
Cp= [::J p = 0 (33)
B

Since C will have fewer rows than columns, equations (32) and (33) may be
combined and written in the form

[C., C ][pd} = 0 (34)
dd “dg Py
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where Cdd is a non-singular square submatrix of C. Then

-1
Py “Cad Cay
= Pe (35)
) Lox

Let g = p,. Then equations (31) and (35) give

-ctc
- dd “dg (36)

2

ISLSL
as the general expression for transformation matrix T2' The matrices M and K
in equation (30) are given by

T

K=T T (37)

2 2 2

Goldman (ref. 7) solved equations (28) and (29) by an approach which will
be referred to as the explicit method. Let

n

qQ
m

(38)
v

Then equation (28) may be written
u E +kp = CT o (39)

o may be related to p by multiplying equation (39) by C u‘l and incorporating
equation (33). Then equation (39) may be written in the form

Tewrch) ™ eculep=0 (40)

pp+[l-c¢

Goldman's final system equations are obtained by letting

p:K_]/Zq (4])
Then equation (40) can be reduced to the form of equation (30) with
2 . - - - 2
M=T,K=x "y 1-¢ (cu?c)?tcu'ye” (42)

Since equation (41) implies no reduction.in number of coordinates, equation
(30) Teads to some extraneous frequencies and modes in the Goldman method.
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Description of Various Coupling Methods

Table I shows the constituent vectors and matrices (1.e., T], P» T2, etcj

of a representative selection of the substructure coupling methods named
earlier in the historical review. In all cases the methods fit into the
general formulation just described. However, in a few cases the notation has
been simplified by employing a partitioning of C (or B) different from that
indicated in equations (34) and (36).

CONVERGENCE PROPERTIES

Desirable characteristics for substructure coupling methods include
(e.g., see refs. 13,15): computational efficiency, interchangeability, compo-
nent flexibility, synthesis flexibility, static completeness, and test compat-
ibility. Although it is not within the scope of this paper to make a detailed
comparison of coupling techniques on the basis of the above criteria, a few
results concerning computational efficiency, i.e., convergence, will be
presented. Several authors have previously discussed convergence of system
frequencies (e.g., refs. 13,16,26,27). Rubin (ref. 13) also considered con-
vergence of mode shapes and shear and moment in beam elements.

Figure 1 shows frequency and RMS bending moment convergence properties of
mode 3 of a clamped-clamped uniform beam.

CONCLUDING REMARKS

A general formulation has been presented which permits substructure
coupling methods to be defined in terms of a few constituent matrices.
Although a detailed comparison of various substructure coupling methods has
not been within the scope of this paper, it is hoped that the presentation of
this general formulation will facilitate future studies of substructure
coupling methods. At the present time the use of substructure coupling as an
analysis tool seems to be a well-developed subject. On the contrary, much
remains to be Tearned about effective ways to use substructure coupling in
conjunction with experimental studies. It is hoped that this topic will
receive increased attention in the future.
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CORIOLIS EFFECTS ON NONLINEAR OSCILLATIONS OF
ROTATING CYLINDERS AND RINGS

Joseph Padovan
University of Akron

SUMMARY

The effects which moderately large deflections have on the frequency
spectrum of rotating rings and cylinders are considered. To develop the
requisite solution, a variationally constrained version of the Lindstedt-
Poincare procedure is employed. Based on the solution developed, in addi-
tion to considering the effects of displacement induced nonlinearity, the
role of Coriolis forces is also given special consideration.

INTRODUCTION

Numerous engineering applications (tires, turbines, satellites, etc.)
contain rotor systems which are essentially rings or shells of revolution
rotating about their axes. Obviously, in order to properly influence their
design, a thorough dynamic analysis is necessary. In this regard, numerous
papers have been published which deal with the free vibration properties
of such systems. Most such work has centered on stationary configurations,
as can be seen from the excellent surveys by references 1 and 2. The effects
of rotation, in particular Coriolis forces, have been discussed by references
3 to 7. With the exception of references 6 and 7 which treated small dynamic
deformations superposed on large static deformations, the previous investiga-
tions incorporating Coriolis acceleration forces have been limited to linear
shell theories. This is a shortcoming since numerous rotor systems, tires,
satellites, and turbines are flexible enough to undergo significant deflections
in the form of moderately large rotations.

It is the purpose of this paper to consider the effects which such
moderately large rotations have on the frequency spectrum of rotating struc-
tures. In particular, the analysis presented will consider the free
vibration characteristics of rotating rings and cylinders wherein the deflec-
tions involve moderately large rotations. Since the analytical model used
to characterize the stated problem involves nonlinear partial differential
equations, a modified version of the renormalized perturbation procedure is
employed to evaluate the overall solution. This modification was undertaken
since the usual renormalized procedure is unwieldy for systems of equations
involving a multitude of frequency eigenvalue branches and secondly yields
steady state results which are irregular for the linearized case. The modi-
fication employed involves prescribing the system energy in advance; hence,

a hierarchy of energy states is obtained from which the strained parameter
can be evaluated. The resulting solution employing this procedure is
regular, and thus, the proper Timiting behavior is obtained for the linearized
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case. Based on the solution, in addition to considering the global effects of
nonlinearity, special emphasis is centered on determining the effects of
Coriolis forces in the range of deformations marked by moderately large rota-
tio?s. Hence the effects on the backward and forward traveling waves will be
evaluated.

GOVERNING EQUATIONS

Since the nonlinear oscillations of rotating, elastically supported rings
and infinite cylinders undergoing deflections involving moderately large rota-
tions are considered herein, the governing displacement equations of motion
employed to model the stated problem are defined by (refs. 2,4,6, and 7)

p 1, ,

Alw’eeee+A2(V’e+w)+(K+ﬁ)w'€A2(Ew’e+v’eew’e+v’ew’ee+ww’ee) B
3 2 ‘ - _o2y) =
7€ Azw,ew,ee+f cos (me) cos (wt)+ph(w,tt ZQV,t Q2W) = 0 (1)

- -02 = ’
AZ(V,ee+W,e+sw,ew,ee) ph(V,tt+2s2W,t Q2V) 0 (2)

where
A =E..].:_ . A :Eﬂ (3)
1 R 2 R2

such that ¢ = W /R and 6, t, ( ),g, )’t’ W, V, Wps E5 I, h, Ry p, P, x, w, and
Q respectively = represent circumferential space, time, space and time dif-
ferentiation, radial and circumferential shell displacements, maximum radial
displacement, Young's modulus, moment of inertia, shell thickness, radius and
density, internal pressure, foundation elasticity, exciting frequency, and
lastly, the rotational speed of the shell. Due to the inherent nature of the
circumferential coordinate space and the fact that the steady state response

is being sought, it follows that W and V are periodic in both space and time.

To round out the requisite field equations, the following potential energy
functional is associated with equations (1) and (2), namely

T 2w

= 2 2 2 2 2
Y é g {Alw’ee+A2(V’e+2V’ew+w )+€A2(V,ew, +ww’e) +

2
4R W+ (<HRINP42F cos (me) cos (ut)H-oh[n? (R +4) #H.3 +
02V2+V, 2420 (R +H)V, .-20H , V] dedt (4)

where T =-%—— and R* = R/W .
TW m

410




SOLUTION

As noted earlier, the standard renormalized perturbation procedure has
the twofold difficulty of yielding irregular results as >0 and secondly, is
unwieldy when more than one equation of motion involving several frequency
eigenvalue branches is considered. This difficulty is circumvented by pre-
scribing the systems potential energy in advance such that (W; V) = (W(e,t,f,
msy)s V(e,t,f,m,y)). Once the solution is obtained, the role of y and W are
reversed to that employed in the traditional version of the renormalized pro-
cedure. To initiate the solution, w is treated as the strained parameter;
hence W, V, and w are expanded in the following perturbation series

o]

<W; V; w>= T <W.; V.3 w.>€1 (5)
j=0 1 j i
such that time is stretched so that t = wt.

In order to obtain the zeroth order equations, ¢ is set to zero; this
yields

P

A wo 8690 +(A +K+EJN +A Vo6 *oh(w wo tt ~

2w0§zVO,T-QZWO)+f cos (me) cos (t) =0 (6)
< 2 02

A (Vo,ee+wo,e) oh(w ovo, ZwOQNO,T Q VO) (7)

21 27

p
= 2 2 2 2
é é {AlwO 06 A2(v0,e+2v0’ewo+wo)+(.<+§)w0 +

* 2
- 2 2402 2 24,2y 2
2f cos (me) cos (T)w0 oh[22(R +w0) +m0w0’T+Q V0+wOV0 +

k]

*
2wOQ(R +W0)V0 . ZwOQWO’TVO]}deT (8)

b

whereas with time, the potential energy space is stretched so that I' = vy/Q.
Since the steady state solution is sought,

Wi V)= (W 5V

o’ Vo) cos (mo)+(W 5 V) sin (ms) (9)

SO

where W are time dependent. Employing equations (9), (6), and (7) reduce
to the $o110w1ng matrix set of ordinary differential equat1ons, namely

2 -
[Blm]Ymo - [Bzm]Ymo T [Bsm]Xmo+f cos (r) 9 (10)

such that
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_ T
Yoo = (wco’ Vsor o2 Vo) (11)

Noting that [B,p] is skew symmetric while [B,,] and [B ] are purely sym-
metric, the steady state form of Y is g1ven by

Xmo = gmc cos (t) + gms sin (t) (12)

where gmc and %ms satisfy the matrix equation

—

wg[Blm]'[Bam] ""()[Bzm:| %mC (13)

wo (B L"o[Blm]-[Bm:I L

-ms

2

)

Noting that the pencil of equation (13) yields the characteristic equation
of equation (10), equation (12) becomes unbounded for w, equal to the natural
frequency eigenvalues of the linear case. The properties of such eigenvalues
can be ascertained by developing the appropriate Rayleigh quotient. This is
possible by inserting y,oZ,eJT into.equation (10) to yield a complex second
order regular po]ynom1aT matrix problem. The inner product of this expression
and Z, yields a bilinear form from which the following modified version of
Rayléigh's quotient is obtained, namely

- o7 =3 21
B T L Ll R
I e i B ] B (14)
20hZ, 7 ohZ 7 4ohZ 7

As can be seen from equation (14), Coriolis forces cause a twofold bifurcation
in the number of eigenvalue branches. Following the previous comments, the
relationship betweenT and wy, Wy» and VQ must be evaluated by inserting equa-
tions (9) and (12) into equation (8); this yields

4 P _ 24 209 2 2 2 2
[Alm +A2+K+§ ph(a+wdm®) T(WE  HHE o HWE ot Waso) +

[A m2—ph(92+m2 2)](V2 +V2_ +y2 )+ 2mA (v
SO

W +
CCO Cso SCO S SCO Cco

vssowcso'vccowsco'Vcsowsso)'20h“’ogm(wccovcso-wcsovcco *

- - + - +
wscovsso wssovsco Vccowcso Vesoleco Vscowsso

Vssowsco)] = 1/m? (15)

where wcco""’vsso denote coefficients of the wo and Vo solution, namely
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V__ )sin(me)sin(t)

v )cos(me)cos(r)+...+(wsso; ss0

(wo;vo) - (wcco; cco
As can be seen from equations (13) and (15), four potential energy resonances
are initiated for wy~O(wpf) wherein wps are the frequency eigenvalues of the
linear problem. Hence equation (5) is regular for e 0 (the linear case).

The first order set of field equations can be obtained by taking the first
derivative of equations (1), (2), and (4) with respect to e and then setting e
to zero. This yields

P P
Alwl,6668+A2(V1,9+w1)+(K+§)w1+ph(wow1,TT-ZQwovl,T

1,2 .
A, (GHZ =V oW 0’6N0,96+W0W0’ee)-th(wleWO’TT-levo,T) (16)

- 02 =
Q wl)

- +
2°0,6 0,06 0,6 v

- 2
A_(V +W e) ph(on

+ o2 -
2V'1,80 1, 5 2Q‘”owl,r f Vl)

1,6

—Azwo,ewo,ee+2ph(w1wovo,TT+Qw1wo,r) (17)

2n 2w

é é {2A1wo,eew1,ee+2A2(Vo,e+wo)(V1

P *
2(K+§)w0w1+2f cos (me) cos (T)Wl—th[Qz(R +W0)w1+

2
9+w1)+A2(V0,9+WO)w0,6+

b

2 2 2 2
ww W& FwiW W +fV V + +
01 0,T O 0,7 1,T o1 wowlvo,r

* *
2y +Qw_R + + +
oV, vy, t R Vg QR V) e W Vo o

Qwowovl +w W V -Qw Wl

V - W V. -
B s PR Sl s Mt e Ml W |

E]

lewl,Tvo]}dedT =0 (18)

Noting the form of the inhomogeneities appearing in equations (16) and (17), it
follows that Wy and Vy can be taken in the form

(Wl;Vl) = (wc1;vc1) cos (21)-+(w51;vsl) sin (2t) +

"+(w531;V551) sin (m8) sin (1) (19)

where the coefficients We1,... are directly obtained upon inserting equatjon
(19) into equations (16) and (17). Furthermore, employing equation (19) in
conjunction with the first order potential energy constraint, equation (18),
the following functional relationship is obtained for wy, namely
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0, = o (1/D(2w0,0), 1/D(0,2m), 1/D(2w0,2m)) (20)

where D is the determinant of the pencil of equation (13). Hence for wo~0(uwpe) 5
wy is bounded and positive definite. This follows since 1/D(2uwy,0),...etc.
remain bounded for Vwye(0,«). Therefore, unlike the zeroth order set, W, and

Vi remain bounded for Vuwg.

In order to obtain the second order field equations, equations (1), (2), and
(4) are differentiated twice and then € is set to zero. This operation yields

AW A (V

P 2
M5 60062 +w2)+(K+ﬁ)w2+ph[“ow2,TT'Zﬂwovz,T'

2,0

v W

W+ +
1,60"0,6" '0,00"1,8""

v

2 =

+
I,GWO,G v

12
wlwo,e+wow1,ee]+'2 Azwo,ewo,ee-ph[zwzwowo,rT *

2 - -
wlwoaTT+2mlw0wlaTT ZQwZVO,T Zlevl,T] : (21)

- 2
AZ(V W) ph(wOV

+ +
2,66 2,0 T ZQwOWZ

02 =
2,1 Q V2)

b

W W ) + oh{w2V +20 w V

A (W, W + +
2( 1,6 0,06 0,6 1,68 1 0,TT 0 2 0,TT

ZwZQwo g'Zwlﬂwl ) (22)

s s T

0=/ s {AW> 428 W W _ +A (V
0O o !

+ + +W. )2 +
1,66 1 0,006 2,606 1 1,6 wl)

2A_(V_ W )(v2 e+w2)+A2(2(v

270,60 0 . oMo Mo, oM

+
0, 0" 0,0 1,8

L Py (w2
)+ A2W0’6+(K4“§)(W1+2W0w2) +

2
(v e+W1)W 7

13 0,9

2f cos (me) cos (t) w2-ph[292(R*+wo)w2+92w§ +

2 2 2
ws (2W W + W +4 W + +
o 2,70,T 1,r) “o¥ O,Twl,r szwowo,r

2 FY2 )42 2 ‘
Q (2VOV2 V1)+¢1)0(2V2,TV0:‘T+V1’T)+4w1wovl,TVO’T

5 * *
2wow2Vo’T+29wo(R +WO)V2’T+ZQw1(R +WO)V1,T +

*
+ + -
ZQwZ(R WO)VO,T ZQwOWIVI’T+29w1W1VO,T+ZQwOW2,TVO

(continued)
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ZQMOWO’TVZ-ZQwOWZ’TVO-Zlewo,Tvl-Zlewl’TVO -

20w, W TVO]}dedr (23)

5

As in the zeroth and first order cases, noting the inhomogeneities of
equations (21) and (22), Wp and Vp take the form, namely

(W V) = (WCZ; ch) cos (2t) +

+ (W 3 V__ ) sin (3me) cos (31) (24)

ss2” 'ss2
Employing equations (24), (21), and (22), it can be shown that the following
proportionalities exist, that is

. « 3 . 3
(w2’ V2) (WZ(]/D (woam))s V2(1/D (woam))) (25)
Hence Wy and Vo become unbounded for wy~0(wnf). The requisite form of wy can be
obtaineg by 1nsert1ng equation (24 1n%o the second order potential energy ]
functional, namely equation (23). After extensive manipulations, this operation
yields the following proportionalities for wp, that is

w, = szUM(l/D”(wo,m))/szEN(1/D2(wo,m)) (26)

Thus for wo~0(wpf), wo~0(1/D%(wg,m)) where, since D?(wyf,m) is singular, wp

is itself unbounded and negative definite. Additionally W, and V, are
themselves unbounded at such values of w,.

DISCUSSION
Stopping the solution at this point, W, V, and w are given by

(W Vs w)~(WO; Vs wo) + (Wl; Vs wl) e +

(wz; V2; w2)€2 + 0(e3) (27)
Due to the procedure employed, it follows that W and V are regular in €,
including ¢ = 0. This result is,in contrast to standard renormalized
perturbation procedures which do not yield zeroth order solutions exhibit-
ing the proper unbounded behavior for w on the order of the linear system
frequencies. :

The softening behavior of the ring or infinite cylinder can be directly
obtained by considering the fundamental relationship between w and T.
Before doing this, the nature of the wg dependency of w must be ascertained.
In particular, for wo~0(wpf),

415




— 1 )4 0(e?) (28)

Dz(wosm)

w0 + ¢0(1) - 20 (

where since w, is negative definite and unbounded, w is itself negative
definite and unbounded. Such unboundedness occurs at each of the eigen-

values of the pencil of equation (13). Note as Q is set to zero, the two pairs
of eigenvalue branches merge back to the two frequency branches of the station-
ary state, and hence, the traditional frequencies are obtained.

Eliminating w, from equations (28) and (15), it follows that since w is
unbounded and negative definite for wy~O(wpf). the overall steady state harmonic
behavior of the ring or infinite cylinder 1s of the softening type. Hence,
as w is raised or lowered, the usual softening type jump phenomenon is
encountered.

In the context of the foregoing, the results can be summarized by the
following remarks:
(1) Coriolis forces induce bifurcations in the frequency spectrum;

(2) Such bifurcations extend into the range of deflections marked by
moderately large rotations;

(3) A11 branches exhibit a softening type behavior; this applies to the
branches associated with forward as well as backward traveling waves;

(4) Driving frequencies in the neighborhood of the linear system
frequency may induce jump phenomena;

(5) Setting 9+0 yields the results for stationary rings and cylinders.
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ON THE EXPLICIT FINITE ELEMENT FORMULATION OF THE DYNAMIC
CONTACT PROBLEM OF HYPERELASTIC MEMBRANES

J. 0. Hallquist and W. W. Feng
Lawrence Livermore Laboratory, University of California
Livermore, California

SUMMARY

Contact-impact problems involving finite deformation axisymmetric membranes
are solved by the finite element method with explicit time dintegration. The
formulation of the membrane element and the contact constraint conditions are
discussed in this paper. The hyperelastic, comprassible Blatz and Ko material
is used to model the material properties of the membrane. Two example problems
are presented.

INTRODUCTION

The purpose of this paper is to present a method for the dynamic analysis
of contact-impact problems involving hyperelastic compressible membranes. A
strain energy functional developed by Blatz and Ko (ref. 1) is used to charac-
terize the material of the membrane. This element was added to HONDO (ref. 2),
a finite element code that explicitly integrates the equations of motion. The
contact-impact algorithm, which was also added to HONDO, was recently developed
by Hallquist (ref. 3) and is briefly described here.

Two examples are provided to demonstrate the capability of the method: in
the first, a flat circular membrane is inflated by a pressure loading into a
thick-walled sphere; and in the second, the sphere is impacted into the mem-
brane.

FORMULATION

Equation of Motion

Since an explicit time integration scheme is being considered, the equation
of motion becomes .
Mu=P-F (1)

where M is th% diagonal (lumped) mass matrix,ﬁ %s a global vector of nodal ac-
celerations, P is the applied load vector, and F is the stress divergence vector,
This equation is integrated by the velocity-centered central difference method.

*WOrk was performed under the auspices of the United States Emergy Research
and Development Administration under contract No. W-74-05-eng-48.
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Material Properties

The strain energy density per unit undeformed volume ug for a compressible
hyperelastic material is expressed as

AV
_ 1 - 2v TT <20
ug = }J[I] -3+ S <I3 - 1>] (2)

where u is the shear modulus, v is Poisson's ratio, and I; is the ith strain

invariant. These invariants can be expressed in terms of the principal stretch
ratios Ay, Ao, A3 in the meridional, circumferential, and transverse directions,

respectively, as

Ay T A

2
2

2 2
I] ot A3

I,=2A

2
1
) (3)
1

>

2
3 Az A3
For thin membranes, the stress component normal to the midsurface is assumed to
be zero; hence,A3 can be expressed in terms of Ay and A5

Vv

_ T-v
Ay = (x]xz) (4)
and the strain energy density becomes a function of Xy and Ao.

Membrane Element

An isoparametric axisymmetric membrane element is shown in Figure 1. The
R, Z, and meridional coordinates S of the undeformed configuration are related
to the natural coordinate L through

_ 1 i1 J

R = 5 (1 - L)R" + 5 (1 +L)R

z=12«(1 —L)Zi+J2—(1+L)Zj (5)
_ 1 i, 1 J

=% (1-L)sT+ 5 (1+1)s

and similarly for the displacement components u, and u,

1 1

u. == (1 - L)ui + = (1 + L)uj

r 2 2 r (6)
=1 i, 1 J
u, =3 (1 - L)uZ * 5 (1 + L)uZ

In the deformed configuration, the r and z coordinates along the midsurface are
given by

r = ur + R
(7)

z=u, +
u, Z

The principal sketch ratios Ay and Ay can be defined as
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1/2
2 2
_l{dr dz _r
M"[a‘s' *\@ 2 R (8)
Substitution of equations (5) and (6) into equation (7), putting the result

into equation (8), and applying the chain rule Teads to expressions for A
and Ay in terms of the nodal point quantities

1 . . . \2 . . . A2 172
-1 J Jo_pi _ i J jo_o4
11 7 [ RY + us, R ur> + <? + uy, z uz> ] (9)

(- L)ui + (1 - L)

(1 - LRV + (1 + LRI

A 1+

2

where 2 = Sj - ST,

Since A1 and Ay are now functions of the natural coordinate L, the total
strain energy stored within the membrane element during deformation can be ex-
pressed as the integral

1
U= mht /. ug Rdl (10)

J-1

in which h ié the thickness of the undeformed membrane.

The partial derivatives of U with respect to the nodal displacement compo-
nents yield nodal point forces that are subsequently accumulated into the stress
divergence vector. In the problem under consideration these derivatives can be
calculated very easily. For example, the nodal point force acting in the r-
direction at the ith node is given by

7

1 ~
A A
oU _ 1 2

u,, 1 du, du,,

where Ty and T2 are Lagrange stresses in the meridional and circumferential di-
rections, respectively, A two point Gauss quadrature is used to perform the
above integrations.

The Tumped masses for each element are found by the addition of the off-
diagonal terms of the consistent mass matrix to the diagonal term, Each mem-
brane element yields the following contributions to the nodal point mass at
nodes i and j, respectively,

m, = 2mp2h (R1/3 + RI/6)
T (12)

2m08h (Rj/3 + RV/6)

H

m.,
J

where p is the mass density of the undeformed membrane.
For stability the time step At is restricted such that the inequality
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A < —%— (13)

A

> . ->
is satisfied where A2 is the maximum eigenvalue of M=K in which K is the stiff-
ness matrix.

A time step At is calculated for every element in the mesh_and 90 percent
of the smallest value is then used. For the membrane element A% is calculated

exactly from
2. 1(2%, a?u)+_1 2%y, s% a1)
M1 au;Z i2 M. auJZ Buiz

3uz / J r

Contact-Constraint Conditions

Two elastic bodies occupying regions Bl and BZ in the reference Eonfigura—
tion at time t = 0 are shown in Figure 2. The boundaries of Bl and BZ are de-
noted by 3S! and 882, r?specti§e]y. After deformation at ti?e t # 0, these
bodies occupy regions b'_and b The boundaries of bl and B% are denot?d by
as! and 3s2.” Whenever b! and b2 are in contact, the nodal points on 3s' in the
contact region are constrained to slide along line segments connected by nodal
points lying on 3s4, Separation is permitted when the interface pressure 1is
negative. Impact and release_conditions are applied whenever nodal points on
s! come into contact with 3s2. These conditions, which are based on the gen-
eralization of those given by Hughes, et al, (ref. 4),conserve linear and angu-
Tar momentum.

Const;aint conditions must be imposed ;nto the equations of motion for each
node of 3s' in contact with a segment of 3s4. These conditions are imposed
through a transformation of displacements which is performed at the beginning of
each time step. In this transformation the radial and vertical displacement com-
ponents of the node on 3s! are transformed into a displacement component tangen-
tial Eo the segment and a relative displacement component normal to the segment
of 3s% on which it rests. Since no separation is permitted during the time step
the displacement, velocity, and acceleration of this latter component are set to
zero. A transformation matrix T is constructed which relates the vector of

global displacements U to a vector U' containing the transformed components
-

=11 (15)
Letting T remain constant throughout the time step and differentiating equation
(15) with respect to time yields

2T %

u=T414 (16)
Equation (16) is ;gbstituted into equation (1) and the resulting equation is
premultiplied by T~ in order to obtain the modified equations of motion

MrE o= THE - F) (17)

which,contains the contact constraints. Here M o= ?t ﬁ?. Although M s diag-
onal M is not. For computational efficiency the appropriate off-diagonal mass-
es are summed to the diagonal.

After e%uation (17) is solved for ﬁ‘, the normal accelerations of the nodes
of 3s! on 3s¢ relative to 9s¢ are set to zero, The global accelerations then
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follow directly from equation (16).

EXAMPLES

In the following examples, all physical quantitfes are given in nondimen-
sional form. Any consistent units may be assumed without altering the results,

Inflation of a Membrane into a Thick-Walled Sphere

A flat unstretched circular membrane with a thickness of 0,01 and a radius
of 2.0 is positioned beneath a thick-walled sphere having an inner radius of
0.40 and an outer radius of 0.60. In the undeformed configuration, the distance
measured perpendicularly from the center of the membrane to the center of the
sphere is 1.20, The hyperelastic material described by equation (2) is used to
model the material of both the membrane and the sphere with v and u set to
0.463 and 150, Densities of 1.5 and 0.15 were assumed for the material of the
membrane and sphere, respectively,

The membrane is inflated by a pressure p defined by

0<t<0.11. p=1.250
= t - 0.1
0.11 <t < 0,15 p=1.250 - 1.125 (——Ti7ﬁy~—> (18)
t > 0.15 p=0.125

and is brought into contact with the sphere.

In Figure 3 the deformed shapes at various times throughout the deforma-
tion time history are shown, At late times some wrinkling occurs (for example,
note the Tast frame) and the calculation ceases to be meaningful, A total of
eighty elements were used in the calculation. Forty elements were of the mem-
brane type.

Thick-Walled Sphere Impacting a Membrane

In this example the thick-walled sphere impacts the flat circular membrane
with an initial velocity of 1.0. The dimensions and material properties of the
membrane and sphere are identical to those of the preceding example. In Figure
4 the deformed shapes at various times are shown. Maximum deflection occurs at
the center of the membrane at approximately t = 0,90 after which rebound begins.
Separation of the sphere and membrane occurs at approximately t = 1.94.

In the above examples the stress at the center of the membrane increases
significantly after the initial contact thereby providing-evidence that a large
amount of sliding occurs during contact.
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Figure 1.- Definition of membrane element.

Figure 2.- Two bodies in the reference and
deformed-contact configurations.
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t=0.0 t=0.045 t=0088

L9~

t=0.130 t=0.171 t=0.202

t=0.233 t=0.264 t=0.296

Figure 3.- Inflation of circular membrane into
thick-walled sphere.
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1=0.00 t=0.26 t=058
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t=0.89 t=1.21 t=1.52

> 2 2

t=1.84 t=2.15 t=2.47

Figure 4.- Impact of thick-walled sphere into
circular membrane.
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FREE VIBRATIONS OF LAMINATED COMPOSITE ELLIPTIC PLATES

C. M. Andersen
College of William and Mary

Ahmed K. Noor
Joint Institute for Advancement of Flight Sciences
The George Washington University

SUMMARY

A study is made of the free vibrations of laminated anisotropic elliptic
plates with clamped edges. The analytical formulation is based on a Mindlin-
Reissner type plate theory with the effects of transverse shear deformation,
rotary inertia, and bending-extensional coupling included. The freguencies
and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunc-~
tion with Hamilton's principle. A computerized symbolic integration approach
is used to develop analytic expressions for the stiffness and mass coefficients
and is shown to be particularly useful in evaluating the derivatives of the
eigenvalues with respect to certain geometric and material parameters.
Numerical results are presented for the case of angle-ply composite plates
with skew-symmetric lamination.

INTRODUCTION

Although a number of studies have been devoted to the free-vibration
analysis of isotropic elliptic plates (refs. 1 to 4), investigations of
orthotropic plates are rather limited in extent (refs. 5 and 6), and to the
authors' knowledge, no publications exist dealing with the free vibration of
laminated anisotropic elliptic plates. The present study focuses on this
problem. More specifically, the objectives of this paper are (1) to present
a computational procedure based on the use of computerized symbolic integration
in conjunction with the Rayleigh-Ritz technique for the free-vibration analysis
of laminated anisotropic elliptic plates and (2) to study the effect of vari-
ations in the lamination and geometric parameters of the plate on its
vibration characteristics.

The analytical formulation is based on a form of the Mindlin-Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
The frequencies and mode shapes are obtained by using the Rayleigh-Ritz
technique in conjunction with Hamilton's principle. The stiffness and mass
coefficients are developed using the symbolic and algebraic manipulation
language MACSYMA (refs. 7 and 8). Computerized algebraic manipulation, in
addition to reducing the tedium of the analysis and the likelihood of errors,
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was shown to be particularly useful in evaluating the derivatives of the

eigenvalues with respect to certain geometric and material parameters.

applications of computerized algebraic manipulation in structural mechdnics

are reported in references 9 and 10.

a.,a

1772

CaByp’CGBBS

D
aByp

EL'ET

F
aByp

GLT'GTT

[x]

ij
[M]

ij

m ,m_,m
o}

H(ua,w,¢a)

P

426

SYMBOLS

semimajor and semiminor axes of elliptic plate

extensional and transverse shear stiffnesses of plate,
respectively

bending stiffnesses of plate

elastic moduli in direction of fibers and normal to fibers,

respectively
stiffness interaction coefficients of plate

shear moduli in plane of fibers and normal to plane of
fibers, respectively

plate thickness

element stiffness matrix

stiffness coefficients

mass matrix

mass coefficients

density parameters of plate

kinetic energy of plate

strain energy of plate

displacement components in coordinate directions
fiber orientation angle of individual layers

Poisson's ratio measuring strain in T-direction due to
uniaxial normal stress in the L-direction

functional defined in equation (1)

material density of the plate




o) rotation components

o

{v} vector of undetermined parameters

wi ith component of vector {y}

9 plate domain

w circular frequency of vibration of the plate
_ 9

Ba Tox

o
MATHEMATICAL FORMULATION

The analytical formulation is based on a form of the Mindlin-Reissner
plate theory with the effects of transverse shear deformation, anisotropic
material behavior, rotary inertia, and bending-extensional coupling included.
A displacement formulation is used with the fundamental unknowns consisting
of the displacement and rotation components of the middle plane of the plate
Uy, w, and ¢4. (See fig. 1 for sign convention.) Throughout this paper, the
range of the Greek indices is 1,2 and a term in which any Greek index appears
twice is to be summed over that index. The fundamental unknowns are assumed
to have a sinusoidal variation in time with angular velocity w (the circular
frequency of vibration of the plate). The functional used in the development
of the stiffness and mass matrices is given by

H(ua,w,¢a) =T -0 (1)

where
U= }-“/ﬂc 3 u, du + 2F _. 3 u, 9 ¢
2 aByp a B "y op aByp a B y'p

¢ (2)

+ 9
B v'p

D )
oByp a¢

+ Ca383 (aaw BBW + Z?a BBW + ¢G¢B)] an

_ 1,2 :
T = S W f[mo (uaua + ww) + 2mlua¢a + m2¢a¢o¢] 4aQ (3)

In equations (2) and (3), C and F are extensional stiff-

D
aByp’ TaByp’ aByp
nesses, bending stiffnesses, and stiffness interaction coefficients of the
plate; Ca363 are transverse shear stiffnesses of the plate; moy My and
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my are density parameters of the plate; § 1is the plate domain; and

0

3 = ——

a ox
o

The displacement and rotation components are approximated by expressions
of the form

w = INT {v} (4)

where [N] is a matrix of a priori chosen approximation functions and {v}
is a vector of undetermined coefficients. In the present study the functions
in the matrix [N] are chosen to be polynomials in Xy and X,-

The stiffness and mass matrices of the plate are obtained by first
replacing the generalized displacements in equations (2) and (3) by their
expressions in terms of the approximation functions and then applying the
stationary condition of the functional I[I, namely,

8T = 0 (5)

If the undetermined coefficients {¢y} are varied independently and simultan-
eously, one obtains the following set of equations for the plate:

[K]{v} = > [M]{y} (6)

where [K] and [M] are the stiffness and mass matrices of the plate, res-
pectively. The matrix [K] is symmetric and positive definite and the
matrix [M] is symmetric. The eigenvalues and eigenvectors are obtained
by using the technique described in reference 11.

EVALUATION OF STIFFNESS AND MASS COEFFICIENTS

The stiffness and mass coefficients were evaluated using the computerized
symbolic and algebraic manipulation system MACSYMA. The MACSYMA program used
in evaluating these coefficients is given in the appendix. The major tasks
performed on MACSYMA are

(1) Selecting approximation functions for each of the fundamental
unknowns with undetermined coefficients {y} in equation (4) and developing
analytic expressions for the strain and kinetic energies as quadratic
functions in {y}

(2) Specifying a pattern-matching technique for evaluating the integrals
over the elliptic domain (using the function INT(F) (see appendix))

428




(3) Forming the stiffness and mass coefficients as second derivatives
of the strain and kinetic energies with respect to the undetermined coef-
ficients as

azu 2 32T (7)

K,. = ———%— wM, ., = ———
ij 3wi Bwj ij Bwi Bwj

In view of the symmetry of Kj. and Mijr only the upper triangular portions
are formed in a machine readabie (LISP) format. These are subsequently
converted using the MACSYMA system to  a form which closely resembles FORTRAN
code (the MACSYMA program used in the conversion is not included in the
appendix). Finally, a TECO program (DEC's editor for PDP-10 computers) is
executed to produce the final code.

The aforementioned computerized algebraic manipulation approach signifi-
cantly reduced the tedium of the analysis and the likelihood of errors.
Moreover, since analytic exact expressions are obtained for both the stiffness
and mass coefficients, the derivatives of the eigenvalues with respect to any
of the material or geometric parameters can be readily computed by using the
following formula (ref. 12j:

{ 2\ ,
a—%—;—t " [[%g] - w? [g%]] w3, (8)

where d refers to any of the material or geometric parameters of the plate and
subscript 1 refers to the ith eigenvalue and eigenvector. In equation (8),
the eigenvectors are assumed to be [M] orthonormal, i.e.,

W1," M ), =1 (9)

The two matrices [QE] and [EM] can be easily evaluated using the MACSYMA

system. od %d

Equation (8) shows that the derivatives of the eigenvalues with respect
to any of the geometric and material parameters of the plate can be calculated
with little extra work. These derivatives can be used to obtain an approxi-
mate estimate for the eigenvalues corresponding to a modified (new) value
of the parametere without having to resolve the eigenvalue proplem,
equation (6). To accomplish this, a first-order Taylor's series expansion
of -the eigenvalues in terms of the problem parameter is used (see ref. 12)

5 5 B(wi)
* o~ * -
(wi) W, + (4 d) d (10}
where an asterisk refers to a modified (new) value.
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NUMERICAL STUDIES

Numerical studies were conducted to investigate the effects of variations
in the plate geometry and lamination parameters on the vibration characteris-
tics of elliptic plates with clamped edges. Angle-ply laminates having
antisymmetric lamination with respect to the middle plane are considered.

The material characteristics of the individual layers were taken to be those
typical of high-modulus graphite-epoxy composites, namely,

EL/ET=4O GLT/ET=O.6 GTT/ET=O.5 VLT=O.25

where subscript L refers to the direction of the fibers, subscript T refers

to the transverse direction, and vy is the major Poisson's ratio. The fiber
orientation was taken to be +8/-6/+6/-6/..., (0<8<45). All numerical studies
were obtained using the Rayleigh-Ritz technique with 10-term approximation
functions for each of the fundamental unknowns. The special symmetries ex-
hibited by the free-vibration modes of antisymmetric laminates were utilized
in the analysis (see refs. 13 and 14). The four combinations of symmetry and
antisymmetry with respect to the xj- and xp-axis have been considered. Typical
results are presented in figures 2 to 4 showing the effects of variations in
each of the following parameters on the vibration frequencies: (1) the aspect
ratio of the plate aj/as, (2) the number of layers of the plate NL, and

(3) the fiber orientation angle 6 of the individual layers.

Figure 2 shows that for elliptic plates having the same h/a,, the fre-
quencies of free vibration decrease with the increase in the aspect ratio
aij/ap. The differences between the frequency curves for thick and thin
plates in figure 2 are mainly attributed to transverse shear deformation. As
expected, these differences are more pronounced for the higher modes. Figure
3 shows that the frequencies increase rapidly as the number of layers increases
from 2 to 4. Further increase in the number of layers does not have signifi-
cant effect on the lower frequencies. Figure 4 shows that the minimum
frequency associated with each of the four basic symmetric-antisymmetric modes
increases with the increase in the fiber orientation angle 6 from 5° to 45°.
This 1is not true, in general, for the higher modes.

CONCLUDING REMARKS

The free-vibration response of anisotropic plates with clamped edges is
studied. The analytical formulation is based on Mindlin-Reissner type
theory with the effects of transverse shear deformation, rotary inertia, and
bending-extensional coupling included. The frequencies and mode shapes are
obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's
principle. A computerized symbolic integration approach is used to develop
analytic exact expressions for the stiffness and mass coefficients and is
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shown to be particularly useful for evaluating the derivatives of the eigen-
values with respect to certain geometric and material parameters. Numerical
results are presented showing the effects of variation in the geometric and
material parameters on the free-vibration response of composite elliptic

plates with clamped edges.
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Figure 1l.- Elliptic plate and sign convention.
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SOME DYNAMIC PROBLEMS OF ROTATING WINDMILL SYSTEMS#*

John Dugundji
Massachusetts Institute of Technology

SUMMARY

The basic whirl stability of a rotating windmill on a flexible tower is
reviewed. Effects of unbalance, gravity force, gyroscopic moments, and aero-
dynamics are discussed. Some experimental results on a small model windmill
are given.

INTRODUCTION

There has been a renewed interest in the use of large windmills for
generating power. Such large, rotating structures mounted on tall flexible
towers may give rise to significant vibration and fatigue problems. A good
deal of the experience and knowledge gained during the last few years in con-
nection with helicopter rotors and tilt-wing proprotors can be applied to such
large windmill systems. However, there are unique features of windmills and
their operating environment that will have to be explored individually.

A basic description of general rotating machinery problems can be found in
Den Hartog's book, (ref. 1). Loewy (ref. 2) presents a good review of rotary
wing dynamic and aeroelastic problems. More recently, a NASA special publica-
tion (ref. 3) gives a good sampling of current problems dealing with rotor
dynamics. References 4, 5, 6 are typical of recent investigations of problems
of large windmill systems. The present article will first review some dynamic
problems of a rotating windmill on a flexible tower, then present some pre-
liminary experimental results on a small windmill model.

REVIEW OF THEORY

Figure 1 shows the model used for representing a windmill rotor mounted on
a flexible tower. There is an absolute axis system x, y, z fixed in space,
and also an axis system xg, Vg, zs along the windmill shaft and having xg lie
in the vertical plane (plane of xz). The ith blade rotates about the axis Zg
with a constant speed {, and can lag an angle ¢; in X ygplane and flap an angle
B4 perpendicular to Xgyg plame. Any point, £, on the blade can be expressed
relative to the shaft axes xg, Yg» 2z aS

*The author would like to acknowledge the support of National Science
Foundation Grant AER75-00826.
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x, = e cos wi + £ cos (wi + ¢i) cos Bi
yo = e sin wi + £ sin (wi + ¢i) cos Bi
z, = £ sin Bi (1)

Yi represents the angular position of the ith blade and e is the

The origin of the shaft axis is assumed to translate fore-—and-
aft a distance qp and laterally a distance qp. Associated with these deflec-
tions are an angular rotation Opqp about the y. axis, another possible rota-
tion 674, about the xg axis, and a vertical deflection hyqp in the x direction.
The coefficients GF, 01,5 hy can be obtained from the vibration modes of the
tower (often, hy ® ~h y). The shaft axes can be located relative to the fixed
axes by performing a rigid body rotation about the yg axis and about the x
axis respectively. This gives the relation

In the above,
hinge off-set.

S

X cos quF sin quF sin GLqL -sin quF cos GLqiw X
y = cos GLqL -sin GLqL Vg (2)
z sin quF -cos quF sin GLqL cos quF cos GLqLA z

Using the small angle approximation, sin 6pqp ® Opqp, cos Opqp ~ 1 - 62q§/2 etc.
in equation (2) and combining with equation (1) and the appropriate deglections

gives,

22

x = hogp + (1 - 0pap/Dx .+ Opap Oq v Opdp 24
22
y = q + 1 - GLqL/Z)yS + eLqL z (3)
2 2 22
z = qg + quF X GLqL Vg + (1 - quF/Z - GLqL/Z) z

where xg, yg, 2g are given by equation (1). The velocity components X, ¥, 2
are obtained from equations (3) by differentiation with respect to time t.
Then, by forming the kinetic energy of the blades and tower, and placing into
Lagrange's equations, one can obtain the equations of motion of the windmill
system. To simplify the lengthy algebra involved, it was assumed the hinge
offset e = 0, and only those terms leading to linear terms in the final equa-
tions of motion were retained. The following standard mass integrals were de-
fined for the itP blade,
2
Ii —f& dm

v, = fam, s, = [¢ am,

In the development, a two-bladed rotor was assumed with slightly unequal

(4)

masses, such that M; = Mg + My/2 and My = MB
mass and M, the unbalance in mass of the blades.
made for the average and unbalance in moment S

The vertical gravity loads were put in by writing the

inertia Ig and I.
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incremental work as,
SW = Jq[fxéx + 20y + £,071 = 2Q.8q, )

where f = -mg, £ = £, =0, 8qp represents éqF, 8q%, 88,044 respectively,

and 0x, 8y, 0z are fdund by differentiating equation (3 A similar procedure

could be used for obtaining the aerodynamic forces acting on the blade. How-
ever there, it is convenient to relate the air forces perpendicular and paral-
lel to the blade axis E&.

The final, linear equations of motion in terms of the six coordinates qyg,
dL» Bl; 62, ¢)ls ¢2 are,

My + 245 (L + hi) +20.8 cos Y, + 6%18(1 + cos 2014, - O[S sin

+ 8,1, sin 21204, - 8, S cos ¥ a’q + cpdp + Kyap - 0[S sin i

+ 6Ty sin 2014, - 0[S, cos ¥y + 6T, (1 + cos 2931204, + 0,5 sin y,2°q
+ i(si + 6T, cos Y)B, + 16,1 cos Y08, - rf(hvsi sin )6,

- Zihvsi cos wi ZQéi + fhvsi sin w192¢i = hvSuQ2 cos wl + g[—hVZMB

2 . ‘
+ GF Su cos wl qF - GFGL Su sin wl qL + ZGFSiBiJ + QFA (6)

GL[Su sin wl + eFIB sin 211)l]qF + eLeFIB(l -~ cos 2wl)ZQqF + [MTL + 2MB

2 ) . 2 . . . e
+ QLIB(l - cos-Zwl)]qL + 6LIB 81n,2wl ZQqL + crdy + quL ZGLIi sin wisi

i . 2 < o i ] . Iy 2
Z@LIi sin wiﬂ Bi + ZSi cos wi ¢i ZSi sin wi 29¢i ZSi cos wiQ ¢i

2, :
5,0 sin ¥ - g6.8,5 sin Y qp + qQ, 2

[Si + eFIi cos ll)i]qF - eFIi sin wi ZQqF - eLIi sin wi 9 - eLIi cos wi ZQqL

. 2 P ) _
+ IiBi + Iiﬂ Bi + CBBi + kBBi = g[OFSin + si cos wiBi] + QB‘iA (8)
. i=1,2
- hvsi sinwin + Si cos wiqL + Ii¢i + C¢¢i + k¢¢i = g[Si sin wi
+ S, cos Y,0,] + ’
g cos V01 + Qg | I

In the above equations, the kpq, and cpq, terms represent structural stiffness
and damping, the g terms represent the effect of gravity loads, and the Q
terms represent the aerodynamic forces. The Mpp and Mty are the generalized
tower masses cortesponding to qF and qj, respectively.
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Some of the gravity loads act as stiffness terms in the equations. The blade
coordinates Y7 = Qt and Yy = Y1 + M. For the two-bladed case, it is sometimes
convenient to introduce the symmetric and antisymmetric blade variables,

BS = (Bl + 62)/2’ BA = (Bl - 82)/29 d)S, d’)A = etc. (10)

to lessen the coupling between the degrees of freedom. Indeed, for a com-
pletely balanced rotor without gravity effects, the ¢4 would be uncoupled from
the other equations. In general though, all six coordinates are involved.

Equations (6) to (9) are a linear set of equations with periodic co-
efficients, subjected to gravity, rotor unbalance S, and aerodynamic wind
forcing functions. The gravity loads act directly on the blades while the un-~
balance loads shake the tower which in turn couples into the blades. In addi-
tion to forced response, the homogeneous equations themselves may have strong
instabilities present. These are generally investigated by the use of Floquet
theory for these periodic coefficient equations. It should also be mentioned
that for a three or more bladed rotor, the analysis is generally easier since
one can eliminate the periodic coefficients by a suitable transformation of
coordinates (at least for the balanced rotor, without gravity effects). See
for example reference 7.

Various investigators have examined different subcases of equations (6) to
(9). Coleman and Feingold (ref. 8) first looked at the case qp = O, B
01, = 0, with no gravity, unbalance, or aerodynamics present. Strong mechanical
instabilities of a whirling nature were found to be possible at certain rota-
tional speeds; involving coupling of lateral motion qp, with lag angle ¢,.
This is the so-called ''ground resonance" helicopter phenomenon. Reed (ref. 9)
looked at the case B; = 0, ¢; = 0 with aerodynamics present. Again, strong
instabilities were found 1nvolv1ng qr, and the vertical thF coupling through
the mechanical and aerodynamic gyroscopic forces (QqF, QqL terms). This is the
so-called "propellor whirl" flutter. Young and Lytwyn (ref. 10) looked at the
case ¢; = O with aerodynamics present. This is essentially "propeller whirl"
with flapping. Johnson (ref. 11) has looked in detail at the whole coupled
system, but without gravity and unbalance effects in connection with his studies
of proprotors. Equations very similar to the ones here are presented there.
Finally, it should be mentioned there is a whole series of detailed investiga-
tions of rotors attached to fixed hubs (qy = 0, qp, = 0) which emphasize the
aerodynamic interaction between blade flapping, lagging, pitching and nonlinear
dynamic effects brought on by large initial coning angles for the blades. See
for example, references 4, 5, and 6.

EXPERIMENT

Some preliminary tests were rum on a small .915 m (3.0 ft) diameter wind-
mill placed in a wind tunnel. The general layout is shown in figure Z. The
windmill bad generally 2 blades, cantilevered in both the flap and lag direc-
tions. The approximately uniform, untwisted btlades had a .0762 m(3 in) chord,
and could be set at any incidence angle. For a few runs, 4 blades were
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attached to the windmill.

The weight of a typical blade was .175 kg (.386 1lbs). The cantilever
natural frequencies of the non-rotating blades were measured as 33, 93, 172,
and 310 Hz for the 1St flap bending, 1St lag bending, 2nd flap bending, and
1st torsion modes respectively. These were corrected for rotational effects in
the standard manner, wﬁ = wﬁR + LQZ, to give the rotating natural frequencies
shown in figure 3. The tower stand had natural frequencies of 8.8, 16, 25 and
75 Hz for the lateral yawing, vertical pitching, lateral translation and verti-
cal translation modes respectively. The windmill was instrumented to measure
flap and lag bending moments at the blade root, and also lateral and vertical
accelerations of the tower near the front bearing.

The wind tunnel was run to about 18 m/sec (59.1 ft/sec), and after taking
data on windmill performance, the wind was turned off and the windmill would
coast down to zero rotational speed. This gave a continuous frequency record
through all the resonances of the system. Figures 4, 5, and 6 show the
measured bending moments and accelerations from such sweeps for a blade setting
angle 6 = 0°. Many superharmonic resonances can be seen for the flap and lag
bending moments. These occur near integer orders of the rotation frequency as
can be seen from figure 3. Particularly strong vibrations occured at 2 per
revolution for both flap and lag. Indeed, lag moments near 10 times the static
gravity moments are present at 50 Hz. The corresponding accelerations show a
strong lateral resonance near 24 Hz. In these tests there was a small static
unbalance due to unequal blade weights. Subsequent tests with another set of
blades having a greater unbalance showed the same vibration patterns, but
with peak amplitudes increased more than double. Also, tests run with four
blades on the rotor showed similar strong resonances at 2 per revédlution. The
strong resonances in figures 4 to 6 seem then to have been caused by the
rotating unbalance of the blade exciting tower stand frequencies which in turn
excite blade frequencies superharmonically. Further details of these tests
can be found in reference 12. '

CONCLUSIONS

A brief review of some of the dynamic problems associated with large
rotating windmills has been given, together with some preliminary experimental
results. The importance of flexible towers and their interaction with the
rotating blade dynamics has been discussed. Although much work has already
been done in this area, many interesting dynamic problems remain to be re-
solved, particularly those involving rotors with built-in coning angles where
nonlinear dynamics must be considered.
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LOOKING DOWNSTREAM SIDE VIEW

Figure 1.~ Analytic model for windmill-tower systems.
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Figure 2.- Experimental layout of windmill assembly.
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Figure 3.- Rotating natural frequencies of blades.
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DYNAMIC INELASTIC RESPONSE OF THICK SHELLS USING ENDOCHRONIC THEORY
*
AND THE METHOD OF NEARCHARACTERISTICS

Hsuan-Chi Lin
Argonne National Laboratory

SUMMARY

The endochronic theory of plasticity originated by Valanis has been
applied to study the axially symmetric motion of circular cylindrical thick
shells subjected to an arbitrary pressure transient applied at its inner
surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method.

INTRODUCTION

The problem of dynamic plastic response of shells has received consider-
able attention in recent years. Most of the published works are based on the
flow theory of plasticity and usually limited to isotropic linear work-
hardening materials. Theoretically, the flow theory is based on the existence
of an initial yield surface coupled with an assumed hardening rule to obtain
subsequent yield surfaces; an extensive bookkeeping is necessary to trace the
evolution of the yield surface which changes as deformation progresses. The
analysis of inelastic responses of the bodies is therefore complicated by path
dependence and the yield condition, which introduces different governing
equations in the distinct regions - elastic and inelastic. Valanis (ref. 1)
presented a new theory of plasticity termed endochronic theory, which com-
pletely abandoned the concept of a yield surface and its subsequent hardening
rule. : :

The endochronic theory of plasticity is based on thermodynamic theory of
internal variables and conforms to experimentally observed material behavior.
The basis of the endochronic theory is the assumption that the current state
of stress is a functional of the entire history of deformation. The influence
of past deformation on the current stress is measured in terms of a mono-
tonically increasing time scale of strain-defined (ref. 1) or stress-defined
(ref. 2) endochronic time. This theory has been applied to give analytic pre-
dictions for the quasi-static mechanical response of engineering materials
(metallic (ref. 3) and non-metallic (ref. 4)), the dynamic response of a

*
This work was performed under the auspices of the U. S. Energy Research and
Development Administration. The author wishes to express his gratitude to
Drs. C. A. Kot and R. A, Valentin for valuable comments.
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thin-walled tube subjected to a combined longitudinal and torsional step
loading (refs. 5,6), and the dynamic plastic response of circular cylindrical
thin shells (refs. 7, 8). It has been shown that the theory does indeed have
the capability of explaining the observed phenomena quantitatively with
sufficient accuracy.

In this paper, the endochronic theory is applied to thick axially-
symmetric cylindrical shell subjected to dynamic loading. The governing equa-
tions are then solved by the method of nearcharacteristics.

FORMULATION OF THE PROBLEM

Consider a circular cylindrical thick shell with mean radius R and
thickness H. For the axisymmetric motion of shell, the stress and strain
states are

o o] 0 20 -0 -0 30 0
X XY X r 6 Xr
-1 - —
R = 0Xr % 0 i T3 3er 20r %% %8 0 1
[ ™ -
0 0 06 0 0 2 0 Gx Gr
£ £ 0 2e —-€ —¢ 3e 0
X XT X r 6 Xr
- 1 - -
I e, 0 g£=3 3sxr 2£r € "€g 0 (2)
0 0 ee 0 0 Zee—ex-er

where g is the Cauchy stress tensor, € is small strain tensor, £ and e are
the deviatoric stress and strain tensors, respectively, and subscripts x, r,
8 refer to the components in longitudinal, radial, and circumferential
directions, respectively, Let U and W denote the displacements in the axial
and radial directions respectively at time t of the cross section a distance
x from a reference section, and u and w are the corresponding velocity
components. The equation of motion in the x and r directions have the
following form:

an i XY du XY
T TR 3)
aor aoxr v _ Og =9, @
sr  ox P Bt R

where p is the density.
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The strain-displacement relations and the corresponding compatibility con-
ditions are

e = kY EfE.: du (5)
X X ot ox
o€

_¥w 6w
9 T 1 3t T (6)
e =—aﬂ Eil:=_a_"l\_7 (7)
r or ot or

1930 oW aexr 1{3u ow

exfz( +3;z) 7;‘5—:5(—““3;) ®)

For isotropic material under isothermal condition with the assumption of
elastic hydrostatic response, the constitutive equations in the endochronic
theory can be found from reference 1 as follows:

d% ag dg
S T 9
okk = 3K.s-:kk (10)
2
dg Kldekk o8 + sze .de, 13 (11D)

where a, B, K3, Ky are the material parameters, YU is shear modulus, K is bulk
modulus, kk, 22, and ij are subscripts denoting coordinates, df is the
endochronic time measure with the restriction that Ky + K2/3 20, Ko 20,

and Kj and K2 may not both be zero. From the definition of 8 and £ considered
in this problem, it is possible to express the time measure approximately as

de_\? de \2 1/2
Bdz = + B, [1 + (——dex) o+ (E{.:L) ] de, (12)
] 8
where g1 = Et/o E_ is the asymptotic slope of the uniaxial stress~strain

curve for large strain, 0o is the intercept of this slope with the stress
axis, and the positive sign holds for straining while the negative sign is for
unstraining of deg. Using (12), and equations (9), (10) and the compatibility
conditions (5) to (8) results in the following:

Box 7 aor 306 Yu
Bt_vat—vat_EE};:?l (13)
lo] aor Soe .
™S TV e T T ()
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90 a0 lo;

x % % Bu _ . dw _
5t T e T o T X~ K pr T3 (15)
le]
XT du dw _ 4
e Moar " Max @ (16)
where
- l.al(Zcx—cr—ce) w
1 t2 1+ B¢ r
e lVocl(-ox-or+206) w
2 *2 71 ¥ 8 r
a3 = 3K —
a == *2%r W
4 *1+8cr
a, = |[1+|—| + |7— B.a
1 dee dee 1
az = Bla

and E is elastic modulus, v is Poisson's ratio. Equations (3), (4), and (13)
to (16) are the fundamental equations of the problem considered here.

NEARCHARACTERISTIC SOLUTION

The governing equations presented in the previous section together with
the auxiliary equations can now be written in matrix form as follows:

[aAl1{x} = {B} (17)
where
[ -3k ! -3k 1 1 1 n
-E ' il -v -y
i i=v =v 1
- ! -u 1
1 i 1 | -0
_ 1 R O . <)
[Al = dx " 77777 77 Tidr idt T
dx ! dr ! dt
dx ! dr ! dt
dx : dr ! dt
dx r | dt
L Codx dr dt |
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x) aox ’acr 808 acxr 2u dw ! aox Bcfr 306 acxr @_Q__BH:
0x 90X 0X O0X 00X 0x s Odr Odr 9r Idr Ir 9T,

T
'aox acr 306 chr Su a_w}

9t ot 9t At 9t 3t
and T

c.-o !
_ _ _xr 8 r !
{B} = {aftlaza4 R TR ! dcxdordoedoxrdud%}

The above set of equations is of hyperbolic type; the conventional
bicharacteristic method would be very tedious for six dependent variables.
Using the method of nearcharacteristics first proposed by Sauer (ref. 9), we look
for characteristic-like lines in the coordinate planes along which the solu-
tion can be extended. (Sauer called these lines nearcharacteristics.) The
formulation and numerical technique in the nearcharacteristics resembles the
one-dimensional approach except that those partial derivatives which do not
lie in the plane of interest are considered of zeroth order in that particular
calculation. For example, when the bicharacteristics in the x~-t plane are of
interest, then those terms in [A] containing partial derivative in r-direction
are combined with terms in {B} in equation (17). Now following the same
procedures as described in reference 8 for one-dimensional case, the near-
characteristics in the x-t and r-t planes, respectively, are obtained as follows:

dx = dr = 0,0 (18)
_dx _dr _ (v E |

b Tac " ac  F (I+v) (1-2v) p (19
- dx _dr _ il

CS dt dt - o (20)

The nearcharacteristics obtained here indicate that there are two character-
istic cones existing in the present analysis; one of them (eq. (19)) corre-
sponds to the longitudinal wave propagation while the other (eq. (20))
corresponds to shear wave. They are right circular cones with their center
lines perpendicular to the x-r plane as shown in figure 1. This is an expected
result, because the governing equations have constant coefficients for the
highest order terms. There are no convected terms appearing in the present
analysis. The compatibility equations along the nearcharacteristics can be
found in the same way as in the one-dimensional case. In the x-t plane, we
have:

dOX =+ pCDdu + Cldx + Czdt along %§-= + CD (21)
dgxr =+ pCde + C3dx + Cadt along %%—= + CS (22)
do_ = 1\_’\) do_ + cdt along dx = 0 (23)
dGe = ]_Yv dOX + C6dt along dx = 0 (24)
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where

Similarly

where
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)

3

V] o)
o = - XL _ Xr
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o o1 [ By fu, e} %% % w
2 T T4vii-2v ir Ter)t 2 T 1+sz r
. - ce -a ) o)
3 R ar
c = 2%xr w ou
4 1+Bz r or
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6 l—\)2 T dr | - 2 1+ B¢
in the r-t plane, we have:
do =4+ pC dw + C_dr + C_dt alo £1£=+C
r = P 7 8 "3t T T D
- dr _
dcxr- =+ pCSdu + C9dr + Clodt along it + CS
v _
dcx 1= dGr + Clldt along dr = 0
—_— \) =
doe =13 dor + Clzdt along dr 0
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7 R 9x
C. = 1 Ev wodul) S‘l (Gx~20r+06) w
8 1+v}jl1-2vir ox /) - 2 1+B8z T
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9 R 9%
c - - Zer W oW
10 1+8z r M ax
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Note that each set of the above characteristics lies entirely in planes paral-
lel to one of coordinate planes. Equations (21) to (28) have the appearance of
a one-dimensional method of characteristics formulation except that they con-
tain the partial derivative terms in the other coordinate direction. The
nearcharacteristics equation derived here can be solved numerically by the one-
dimensional technique. Two independent solutions can be obtained, each corre-
sponding to one of the coordinate planes.

NUMERICAL EXAMPLE

Consider a central segment of the Clinch River Breeder Reactor steam gen-
erator flow shroud with length 2% = 1.0668 m, mean radius 0.47 m, and thickness
0.0127 m. The material is 2.25 Cr-1 Mo at 756 K. The pressure input function
was generated by the hydrodynamics module (ref. 10). A constant volume, step
pressure pulse of 13.79 MPa was taken as the source pressure p at the center.
This is typical of the maxima observed in large sodium~water reaction experi-
ments during the transient period. Since the pressure loading was supposed to
be symmetric with respect to the mid-span, only half-length of the shell needed
to be considered here. The boundary conditions for the example are shown in
figure 2- as follows:

u=20 and o] =0 at x = 0
) XT

u=20 and w 0 at x = &

(29)

=0 and o -p(x,t) at r = 0

o
Xr r

o} =0 and g 0 at r = H

XT r

It has been shown in reference 11 that the two independent solutions, each
based on one coordinate plane, are numerically unstable while a calculation
method obtained by averaging the above mentioned independent solution yields a
stable solution. In view of equations (21), (22) and the boundary conditions
(29), it appears that the nearcharacteristics equations in x-t plane are not a
proper choice at r = 0 and r = H because 0, are being prescribed there. There-
fore a combination technique is proposed here: on the boundaries r = 0 and

r = H the solutions are obtained from r-t plane nearcharacteristics equations
while at other points the solutions are obtained from the x-t plane. The
numerical results here show that this leads to a stable solution. The advan-
tage of this technique over the averaging method is a tremendous saving in
computation time. The resulting pressure history at the midspan (x = 0) of the
middle surface of the shell is shown in figure 3. The resultant dynamic
response of radial displacement and velocity as a function of time for the same
center point of the shell is also shown in the figure. 1In figure 4, shell
displacement profiles are shown for several times.

CONCLUDING REMARKS

The endochronic theory of plasticity originated by Valanis has been ap-
plied to study the axially symmetric motion of circular cylindrical thick
shells subjected to an arbitrary pressure transient applied at its inner
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surface. The constitutive equations for the thick shells have been obtained.
The governing equations are then solved by means of the nearcharacteristics
method. It has been shown that a stable solution can be obtained by treating
the radial boundaries in one coordinate plane while at other points the solu-
tions obtain from the other coordinate plane.

10.

11.
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Figure 1.- Nearcharacteristics lines.
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Figure 2.- Boundary conditiomns.
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Figure 3.- Radial displacement velocity, pressure history at x = 0.
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VIBRATIONS AND STRESSES IN LAYERED ANISOTROPIC CYLINDERS

G. P. Mulholland
New Mexico State University

B. P. Gupta
Fluor Engineers and Constructors, Inc.

SUMMARY

An equation describing the radial displacement in a k layered anisotropic
cylinder has been obtained. The cylinders are initially unstressed but are
subjected to either a time-dependent normal stress or a displacement at the
external boundaries of the laminate. The solution is obtained by utilizing
the Vodicka orthogonalization technique. Numerical examples are given to
illustrate the procedure.

INTRODUCTION

The problems associated with the vibrations of plates and shells have been
of concern to many investigators over the years. Most of these works for a
single layered homogeneous material are summarized in two monographs by Leissa
(ref. 1,2) and the reader is referred there for further references. Since
composite materials have become popular due to their mechanical and thermal
properties, it has become necessary to study their behavior to determine their
unique characteristics before they can be used effectively. Recently Cobble
(ref. 3) and Dong and Nelson (ref. 4) considered the vibration problem in
laminated plates and the references contained in these papers summarize the
work in this area quite well. For works concerned with anisotropic and layered
cylinders, the book of Ambartsumyan (ref. 5) and Hearmon (ref. 6) and the
papers of Gulati and Essenburg (ref. 7), Stavsky and Smolash (ref. 8), Cheung
and Wu (ref. 9), and Nelson et al. (ref. 10) are representative.

In this paper, the radial vibrations of a layered anisotropic cylinder
are considered. The cylinders are solidly joined at their interfaces, are
initially unstressed, and can be subjected to either arbitrary time-dependent
normal stresses or displacements at the external boundaries of the system.
The solution is obtained by using a dependent variable transformation in the
displacement equation thereby obtaining a new partial differential equation
with homogeneous external boundary conditions; the Vodicka orthogonality
conditions are then applied to this new system to obtain the final solution,
The plane strain situation is considered for this analysis,

To illustrate the efficient and straight-forward manner in which solutions
can be obtained with this method, numerical examples are given for a two-layered
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composite. Results are presented for the displacement, normal stress,
tangential stress, and axial stress components at two interior positions.

0. , O.., O.
ir 16 1z

6, (t), ¢, (t)

b () 0, ()
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SYMBOLS

constants, {eq. (1))

constants, (eq. (2))

Young's modulus for r, 6, and z directions, dyne/cm2
function of time, (eq. (5))

function of displacement and time, (eq. (10))
Bessel function of first kind of order Di
function of r, (eq. (4))

constants, (eq. (23))

radial coordinate, cm

time, seconds

radial displacement, cm

function of time, (eq. (11))

weighting function, (eq. (17))

eigenfunction

Bessel function of the second kind of order Di
eigenvalues, 1/sec

constant

Poisson's ratio

normal stress in r, 0, and z directions, dyne/cm2
functions of time, (eq. (2))

functions of r, (eq. (9))




PROBLEM

The partial differential equation describing the displacement u; for the
ith layer of a multilayered cylindrical composite whose material properties are
constant for each layer is given by

82ui Bui D12 1 Bzui
2 (I‘,t) —'5;‘— (I‘,t) -~ —u (I‘,t) = o (I‘,t) (1)
ST T B.2 3t2
i
where
b2 21 1Vs1iV1ss
i E.. 1

1i " V32iY23i

p 2P Vs0iv2s
i Ps Ai
b= Uvgyivys) Uvspivasn) = Dars * V513v233) Wipg ¥ V321134

The boundary and initial conditions associated with equation (1) are:

Bul ul(rl,t)
= —_— ' - =
a) o (r,t) = Cypp 5 (1) + Cpypy ) 91 (8)
auk uk
b) 0 (Tt = Oy 37 (e ®) + Cipo T (reyqot) = 0,(1)
c) ui(rk+1’t) - ui+1(ri+1’t)
aui Uy aui+1
4 Cipy a7 e ® * G T Tiep® = G o By (2)
. U (Tt
i+1,12 T

i+1

e) ui(r,o) =0

su

f) 'é—"t—* (I‘,O) =0
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where

i

Cipg = 5 (1-v595V935)
E..

Cry = =

i12 ~ A, (Vo3 * V31iV234)

The boundary and initial conditions given by equation (2) assume that either
the radial stresses or displacements are known at the external boundaries
and that the radial stresses and displacements are continuous at the interfaces.

To obtain homogeneous external boundary conditions, let

2

ui(r,t) = Ui(r,t) + jgl Lij (r)Fj(t) (3)

where
_ Di Di . _
Lij(r) = Aijr + Bij T, j=1,2 (4)
F.(t) = ¢.(t), j=1,2 (5)
J J
and
D.2
V2L, . (1) - —=—L.. =0
PSP IL) (6)

For a cylinder with r 0 (solid cylinder) and Dlj}, Eq. (4) and (6) take the

It st

1:

following form for i
Llj(r) = A1j
and
D,? -A,.D 2
V2L1. - _l~.Ll_(r) - 1)1
] 12 J 12

The functions Lij(r) satisfy the following boundary conditions:
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a)

b)

c)

d)

dLij Lij(rl)
Ci11 a0 (7)) * Cypp T, =1, =1
0, j=2
L. . L .
kj kj .
Caa1 Tar ) T G2 T, (ry ) = 0, J=1
+1 .
' 1, j=2
Lij (Fia) = bygg 50ri0)
dl; ; Lis Ty dl; 5
111 dr Tie1) * Ci1p T =G ar (Tiey)
i+1
. C Lie1,3Ti01)
i+1,12 Tiv1

(7)

Substitution of equation (3) into equations (1) and (2) yields the following
partial differential equation with homogeneous external boundary conditions:

with

a)

b)

c)

. d)

e)

32U, ;U Di2 1 a2Ui
) ¢ o o (1) - S U (r,t) = ——
a2 r r2 1 Bi2 3t2
au U, (r,,t)
1 1Tt
Ci11 37 (o8 + Gy v 0
R S X S CA
K11 or Tkl K2 T ox
U (Piepe® = U (0 000)
53U, U.(r. .,t) 35U
i i-7i+1° _ 1+1
Ci11 a7 (Tyae®) + Gy — 4 = Cie,11 e €
i+1
. Uir1 (Ti4q08)
i+1,12 T,

1+1

T.
i+1°

(r,t) + Hij(r,t) (8)

(9)

t)
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3U, 2
£) g (0,00 = - 53y L) F5T(0) = vy (0)
and where
2
Hy(r,t) = Efz-jél Li; (®F;"(0) (10)
1

SOLUTION: U, (r,t)

The problem has now been sufficiently simplified so that a series
solution for U;(r,t) can be assumed where the orthogonality conditions developed
by Vodicka (ref. 11) can be utilized. Let

U () = Eu (68X, (1) -

r. < r <7v. .,1i=1,2,3,...,k,t >0
i— — i+l -

where the function u (t) is to be determined from the initial conditions and
. m . . .
the functions Xj(r) are eigenfunctions of the eigenvalue problem

Bi2 d dXim Bi2 Di2
S I S 2 -
r dr T dr (r) 2 Xim(r) ¥ “m Xim(r) 0 (12)
with
dX X, (r.)
1m Im 717 _
a) Cypp g7 (rp) *+ Cypp . 0
dXx X (r, . )
km km " k+1
B CGar @ Oyep) * Ggp 5 =0 (13)
k+1
) X = X e
dX. X. (r. )
1 dX.
d) C. Moy y 4, ML i+l,m
ill dr i+l il2 Ti i+1,11 ——757——-(ri+1)
+C Xi+1,m(ri+1)
Ci+1,12 T.
i+1
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The solution of equation (12) is

a o
m m .

Xim(r) = Aim Di E;— T + BimJ—Di E;—r , Di = non-integer (14)
“m “n

Xim(r) = AimJDi ?;- r}] + BimYDi §;~ r] , Di = integer (15)

The eigenvalues, a ., are found by substituting equations (14) or (15) into the
boundary conditions, (eq. (13)). The 2k linear homogeneous equations that
result from this substitution are then solved for the constants A and Bim
(ref. 12).

The orthogonality condition for the eigenfunctions is

ri+1

k

igl Wl2 T Xim(r) Xin(r)dr = (const m = n) (16)
s m# n
1

where
2 2
W™ = Cipr/Bi” =0y (17)

The functions Li.(r) and Hi.(r,t) will satisfy Dirichlet's conditions so
they can be expanded 1n an infinite series of the eigenfunctions

@ =k LniXgn ()5 3 = 1,2 (18)
and
B.? Hy; (1) = mgl [5F5" (0] X (), 5 = 1,2 (19)
where
K
Qmj = N— g f rL (r) X (r) dr, j = 1,2 (20)
1
and
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Hnea =

N =.
m 1

i+1
1P f r [X, 2 (r)]dr (21)

T

Substituting equations (11), (18), and (19) into equation (8), we obtain the
following relationship:

2
- d u 5
" . = 2
mzl e (t) + o4 um(t) + jél lijj (t) le(r) 0 (22)

The initial conditions asssociated with equation (28) are obtained in the
following manner:

Ui(r,O) = mél um(O) Xim(r) = wl(r) = _mgl Qijj(O) Xim(r)
and
an o o
52_-(r’0) = i um'(o) Xim(r) =¥y = Ly Qmjpjl(o) Xim(r)
Thus
2
a) u (o) = <) L. Fi(0) = p

(23)

The solution of equation (22) subject to the initial conditions (eq. (23)) is

g .
= —II—]- | - _...nlJ_ " x 3
um(t) 5~ sin a t + p cos amt 35 3 Fj (t) sin (amt) (24)

m m

ne~1 Do

where the symbol * denotes convolution. Substitution of equation (24) into
equation (11) and that result into equation (3) gives the desired relationship
for the radial displacement of the composite cylinders:

2

2
ug () = JBy Lyg(0) Fo(e) « 2w (6) X (r) (3

where the functions Lij(r), Fj(t), Xip(r) and um(t) are given by equations (4),
(5), (14) or (15), and (24), respectively.

466




STRESS

The stress in the ith section of the composite is given by

E1 Bui ui(r,t)
“ir T B (L-vgovoz) g7 (1,8) + vy + vzyvoo) — (25)

E2 3ui ui (r,t)

3 1 - B 26

°i6 © &, (Vip * VgpVi3) 5 (1t) + (L - vgyvyg) (26)

v E_ v._E
oy, =~ |0, + 222 Vie (27)

12 1 ir 2
EXAMPLE

Consider a two-layered composite with the following properties:

Layer 1 Layer 2
_ 3 3
Py = 1.73 gm/cm o, = 1.75 gm/cm
v121 = v131 = 0.11 v122 = v132 = 0.14
v211 = v31l = 0.16 v212 = v312 = (.18
Vos1 T Vzpp - 0l Vozp T Vzpp T 0.22
E11 = 7.93 x 10° newton/cm2 E12 = 6.6 x 10° newton/cm2
= = 6 2 = = 5 2
E21 E31 1.14 x 10° newton/cm E22 E32 8.76 x 10° newton/cm

The above properties are typical of some of the more common graphites (ATJ and
CHQ) (ref. 13). Assume further that there is a normal stress applied at the
outer boundary of the cylinder.

¢,(t) = 6895 sin (10t) N/cm?

and the physical dimensions are

r. =0;r,=2.54 cm; r_, = 5.08 cm
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Following the procedures outlined in the text, the radial displacement and the
radial and tangential stresses within the composite are obtained; values at
two positions are shown in Figures 1 through 3.

SUMMARY

A closed-form solution for the radial displacement in layered orthotropic
cylinders has been obtained. The solution can be programmed on a modern
computer which enables one to calculate natural frequencies, displacements and
stresses quite easily. The functions #p: and Ny can either be integrated
directly by hand or a numerical integration subroutine can be written to perform
the calculations.
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INCREMENTAL ANALYSIS OF LARGE ELASTIC
DEFORMATION OF A ROTATING CYLINDER

George R. Buchanan
Tennessee Technological University

INTRODUCT ION

The effect of finite deformation upon a rotating, orthotropic cylinder
was investigated by Sandman (ref. 1). He was able to predict the influence of
finite deformations and relate his results to the degree of orthotropy. In
this study an attempt has been made to study the same problem using a general
incremental theory.

The incremental equations of motion are developed using the variational
principle discussed by Washizu (ref. 2). A more than adequate development of
the governing equations has been given by Atluri (ref. 3). Although his inten-
tion is to implement a finite element scheme to solve boundary value problems,
the equations are given in general tensor notation. Hofmeister, Greenbaum, and
Evensen (ref. 4) have presented an excellent discussion of the use of an incre-
mental analysis; again, their goal is thé application of a finite element anal-~
ysis. The governing equations are also developed in the treatise by Biot (vef.
5), using both a geometrical viewpoint and a variational method. The governing
equations are rederived here, in somewhat less detail, using the principle of
virtual work for a body with initial stress (ref. 2).

The governing equations are reduced to those for the title problem and a
numerical solution is obtained using finite difference approximations. Since
the problem is defined in terms of one independent space coordinate, the finite
difference grid can be modified as the incremental deformation occurs without
serious numerical.difficulties. The nonlinear problem is solved incrementally
by totaling a series of linear solutions. This method was used to solve the
same problem discussed in ref. 1 and gave identical results.

GOVERNING EQUATIONS

The derivation of the governing equations is based upon an incremental
variational principle (ref. 2). The body is assumed to be in equilibrium at
some arbitrary reference state along the load path. Let

- > -
X = a+u (1)
be the transformation of a particle at point 3 to point % in the same space,

then U 1s the displacement of the partlcle At the beginning of some increment
of load, a is the initial coordinate and X is the current coordinate, and the
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two are identical. Let initial stresses 0°, initial surface tractions %0, and
initial body forces ¥° act on the body before the addition of the load incre-
ment. These stresses and loads are with respect to the initial coordinate axis
and are referred to a unit area before the loading increment is applied; hence,
they are referred to an undeformed area and volume.

Assuming the Initial stress system is in equilibrium, it follows that,

div 0® + £0 = 0 (2)
oon = 10 (3)

.>.
where n is a unit normal vector. If the body is then loaded with some increment
of surface traction or body force, the total stresses at the end of that incre-
ment of load are the sum of the initial stresses and incremental stresses.

In order to formulate the principle of virtual work, first define a non-
linear strain tensor, such as,

D=E+N (w)
where

E= (Vu+ Vu) (5)

N = (VE?VE) (6)

_> .
where u is the displacement field corresponding to D and D is referred to as
Green's strain tensor (ref. 6). The notation is basically the direct notation
used by Gurtin (ref. 7), although some symbols are different.

+
Introduce a virtual displacement du and incremental stresses, body forces,
and surface tractions, o, ?, and %, respectively. The principle of virtual work

for a body with initial stress may be written,
é{(g°+g)-62—(—f>°+%)-6u}dv—£ (to+f)-duds = 0 (7)
1

where S corresponds to the surface on which stresses are specified. Substitut-
ing equations (5) and (6) into (7) and noting that ¢° and 0 are symmetric yields .

{09+ §Vuto® + Vu ' 6Vuto §VutosTu’ 6vutdv-[ (£o - s+E- 53 )dv-
v - - - - - v
é (F0+80+E+60)dS = 0 (8)
1
Making use of 18(1) (ref. 7), equation (8) can be rewritten as
[80-[div o + div(e® Vu ) + div(eVu') + £ldv
J u avu
-f 63°[0K + (OOVuT)TE + (oVv T)TK - Flds =
L on + (o°Vu avu

1
é 84-[0°n - t°1dS - [éu-[div o© + Foldv (9)
1 v -
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According to equations (2) and (3) the righthand side of equation (9) should be
zero; therefore, the equations of equilibrium become

. . T >
div o + div[(o°® + E)VE.] + £ =0 (10)

and the boundary condition is
oh + [(0° + 0)Vu 1'n = ¥ (11)

>
The assumption that the incremental strains are small implies that u is small
incrementally and

D=E, i.e. N =0 in equation (4). (12)

The initial stress may not be small; hence, we retain 0° terms in equations (10)
and (11). It follows from equation (12) that for a linear incremental stress-
strain relation the incremental stress will be small. Therefore products of
EVET can be neglected and the governing equations become

div o + div(g?VET) + F = 0 (13)
on + (oovu)h = ¥ (1u)

Equations (2) and (3) serve as an error check and can be used at any increment
to determine the equilibrium status of the initial stress system.

The total stress ¢ at the end of any load increment becomes the initial
stress 0° for the next load increment. Then, ¢ must be referred to the initial
coordinates A and the deformed area in order to become 0°. The transformation
has been given by Fung (ref. 6) and can be rewritten as

T
o° = (p/p )V _xoV_x (15)

where p/p, is the ratio of final mass to initial mass and V, indicates that the
operator is with respect to the initial coordinates &. It follows from equation
(1) that

Va§ = Va(a+u) =6 + Vag (16)
where § is a unit tensor. For an incremental theory equation (16) may be written

§+Vu=28+Vu=J (17)
It follows that

o/p, = det|Val] = 1 - tr(Vu) (18)

where tr( ) represents the trace of a tensor. Combining equations (15) through
(18) gives the transformation

0° = [1 - tr(vu)1Jod" (19)
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where

g? = (8 + VE)T =68 + VE? (20)

GOVERNING EQUATIONS FOR A ROTATING CYLINDER

The general equations can be reduced to plane cylindrical coordinates in
order to implement the analysis of a rotating cylinder. The problem is one of
axisymmetric plane strain; hence, the displacement vector 7 reduces to Up, the
radial component, which will be referred to as u.

The numerical method will be applied to the equation of equilibrium (13),
which in plane cylindrical coordinates may be written

o' + (¢ - 0O + g9 y' + go(u" + u! ~ g9 2 4
- (r g) /T o' u lﬁ(u u'/r) g u/r

pw?(r + u) = 0 (21)

where f = p(r+u)w? the inertia force, 0, and 0g are the radial and tangential
stresses, respectively, and the prime denotes differentiation with respect to r.

Equation (12) is represented by the linear strains

Er =u' and Eg = u/r (22)

FTollowing Sandman (ref. 1) we assume a linear anisotropic stress-strain relation

- '
o, =Cypu +Cp, u/r (23)

C.. u/r + C.. u/r (21)

¢ 22

¢ 12

Substituting equations (23) and (24) into equation (21) yields the incremental
governing equation

1 ' _ 2 o 1t t(qOt o
u" + u'/r ou/r< + o0 u /Cll + u (OP + Gr/r)/Cll
_ go 2 2 -
o u/Cllr + pw (r+u)/Cll 0 (25)

where

o =¢C,,/C; amnd B =C.,/C (26)
The boundary condition, equation (14), becomes
! [¢] =
u'(1+09/C ) + B u/r =0 (27)

The linearized incremental stress transformation, equation (19), becomes

O; = or(l + u' - u/p) (28)
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og = ce(l - u' + u/r) (29)

NUMERICAL ANALYSIS

The governing equation (25) was solved using a finite difference technique.
The primary constraint to be dealt with is the magnitude of each increment of
strain. It must be small enough to insure that equation (12) is not violated.
After each increment of displacement is calculated, the finite difference grid
must be updated; hence, the finite difference equations must be reformulated
after each incremental solution. The difference operations may be derived as
follows

=(u,  .-u.)/Ar_ =(u,-u. Ap_=(u. .-u.
(du/dr);=Cug g-ug)/bey=(us-u; o)/ 0e =(uy g-uy 1)/ (brp+ie,) (30)
2u. 2u, 2u.
-1 1 i+l
(d2u/dr?).= * - + (31)
i Arl(Arl+Ar2) ArlAr2 Arz(Arl+Ar2)

The first incremental solution is merely the linear solution for the first
increment of body force. Before the second incremental solution is determined,
the initial stresses are assumed to be equal to the stresses obtained for the
first increment. These stresses are transformed according to equations (28) and
(29). The incremental displacement associated with each finite difference node
is added to the coordinate of that nodes hence, a new initial stress problem is
formulated. The nonlinear analysis for the equation developed by Sandman (ref.
1) was cobtained by transposing all nonlinear terms to the right. The displace-
ments for the previous analysis were used to evaluate the nonlinear terms, and
a solution for u is obtained. The calculated displacements are then used to
calculate new nonlinear terms, and the solution is repeated. This process con-
tinues until the two sets of displacements agree to within some tolerance.

This method was used to verify the results obtained by Sandman (ref. 1) and
appears to be accurate and efficient.

Equations (2) and (3) can be used at any increment to determine if the
initial stress system is still in equilibrium. If the initial stress system is
not in equilibrium, the solution can be corrected by including equation (2) in
the governing equation (25).

NUMERICAL RESULTS

Solutions were obtained for three different materials. These material
parameters were assumed to approximate the behavicr of steel, aluminum, and a
composite epoxy-fiber orthotropic material. The maximum radial and tangential
stresses are shown in figure 1 as a function of w?. The cylinder was assumed
to have an outside radius of 0.127 m (5 inches) and inside radius of 0.254 m
(10 inches). The maximum radial stress occurs approximately halfway between

the Inside and outside, while g is maximum at the inside radius.
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The percent deviation of the nonlinear solutions -above the linear is illus-
trated in figures 2 and 3. The increase in stress using the equations of refer-
ence 1 appear to be almost linear in every case. The radial stress increase,
using the incremental theory, is similar for both steel and aluminum and
reflects a nonlinear behavior. The increase for the composite appears to become
constant. The nonlinear tangential stress deviation increases and then tends to
decrease for both isotropic materials; however, this behavior is not demon-
strated for the composite.

In all cases the increase in stress level does not appear to be significant

for stresses in the elastic range. The analysis presented herein should be
extended to include nonlinear material behavior.
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VARIATIONAL THEOREMS FOR SUPERIMPOSED MOTIONS IN ELASTICITY,
WITH APPLICATION TO BEAMS

M. Cengiz Db&kmeci
Technical University of Istanbul

SUMMARY

This study presents variational theorems for a theory of
small motions superimposed on large static deformations and
governing equations for prestressed beams on the basis of 3-D
theory of elastodynamics. First, the principle of virtual work
is modified through Friedrichs's transformation so as to describe
the initial stress problem of elastodynamics. Next, the modified
principle together with a chosen displacement fileld is used to
derive a set of 1-D macroscopic governing equations of pre-
stressed beams. The resulting equations describe all the types
of superimpcsed motions in elastic beams, and they include all
the effects of transverse shear and normal strains, and the
rotatory inertia. The instabilility of the governing equations is
discussed briefly.

INTRODUCTION

osmall motions superimposed upon large static deformations
have been tackled by a variety of investigators. And differential
as well as variational formulations have been derived for both the
so-called initial stress and initial strain problems (see, e.g.,
refs. 1-3, and references cited there). A classical variational
formulation for the 1initial stress problem is deduced from a
general principle of physics and has certain advantages over a
differential formulation (see, e.g., ref. 3, where the principle
of virtual work is taken as fundamental). This yields only the
stress equations of motion and the natural boundary conditions.
The remaining equations of the initial stress problem should be
introduced as constraints. The constraints, however, can be
removed through Friedrichs's transformation. This has been
illustrated by de Veubeke (ref. 4) for classical elastodynamics.

A1l the past efforts reveal how the static and dynamic
behavior of structures may significantly change by the presence
of initial stress or initial strain. Among those, we mention here
references 5-8 and references 9-12 on initially stressed shells
and plates, respectively. On initially stressed beams, the works
of Brunelle (ref. 13) and Sun (ref. 14) are cited. Brunelle
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derived the governing equations for a prestressed, transversely
isotropic beam via the direct integration of 3-D field equations.
Sun studied the equations for a Timoshenko beam having an initial,
in-plane compressive stress by the use of both Trefftz's and
Biot's formulations.

The purpose of this investigation is twofold. The first aim
is to modify the principle of virtual work, and then to obtain a
generalized variational theorem which describes an arbitrary state
of initial stress. The procedure used in achieving this 1is
analogous to the one used in reference 4. The second aim is to
construct the governing equations of anisotropic beams under
initial stress by the use of the generalized variational theorem
together with an incremental displacement field chosen a priori.
The displacement field allows to include all the effects of
transverse shear and normal strains, and the rotatory inertia for
the prestressed thick beam in which they are significant. The
resulting equations describe all the types of superimposed
extensional, flexural,and torsional motions of thick anisotropic,
elastic beam of uniform cross section. The dynamic instability
of the prestressed beam is also discussed.

SYMBOLS

In a Euclidaen 3-space, Cartesian tensors are used, and
Einstein's summation convention 1s implied for all repeated Latin
(1,2,3) and Greek (1,2) indices, unless indices are put within
parantheses.

L, A; C length and cross-sectlonal area of beam; Jordan curve
which bounds A

v, S entire volume of beam and its total boundary surface

St, sS" complementary subsurfaces of S, where stresses and
displacements are}respectively,prescribed

X.5 X , XS a system of right-handed Cartesian convected coordi-
nates; lateral coordinates and beam axis

uss u > 1 components of displacement vector, displacement
functions of order (m,n)

o} mass density

ns o vi components of unit outward vector normal to S and C

Eij’ sij components of strain and symmetric stress tensors

0 prescribed steady temperature field




isothermal elastic stiffnesses and strain-temperature

1jk1? 71 constants
Imn moment of inertia of order (m,n)
ai= ﬁi, ti components of acceleration and traction vectors
T?jn stress resultants of order (m,n)
F?’n, A?’n body force and acceleration resultants of order (m,n)
Q?’n, P?’n effective load and external force of order (m,n)
("), ( ),i partial differentiation with respect to time, t, and Xy

(%), (¥) field quantities belong to the reference state and
prescribed quantities

C functions with derivatives of order up to and including
m and n with respect to space coordinates X5 and time,t

FUNDAMENTAL EQUATIONS

Consider a simply connected elastic body V+S, with its
boundary S, in a 3-D Euclidean space E. The elastic body is
referred to a x.-fixed system of Cartesian convected coordinates
in this space. "When this body 1s prestressed, we distinguish two
states of the body: its reference (or initial) and spatial (or
final) state. The reference state is considered to be self-
equilibrating following static loading in the natural (or un-
disturbed) state of the body at time, t=t,. We may summarize, for
ease of quick reference, the fundamental equations (see, e.g.,
ref. 2) in the form

0 0p0 .
s{5.1 + p fj 0 in V (1)
n.s?, - £%% = ¢ on S', u? - u'* =0 on s (2)
1713 3 i i
0 = 0 0 - 0 0 .
sij Cijkl €11 eij 1/2(ui,j + uj,i) in V (3)

for this state. Here, p° is the known mass density of the body

material, s?, the symmetrlc stress tensor, f? the body force

vector per 4dit mass in V, u? the dlsplacemeﬁt vector, n. the

unit outward vector normal t& S, ul¥* and t°* the prescribed

displacement and traction vectors on the complementary sub-

surfaces S" and S' of S, €?, the linear strain tensor, and C

(C = C., = C ) théJlSOtheral elastic stiffnesses.
1jkl jikl k1lij

Now, suppose that an infinitesimal (or small) motion is

ikl
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superimposed upon the reference state. For this motion, we have
the following fundamental equations:

s., * s? u, .+ o%(f, —a,) =0 in V (4
( 13 ip J,T>,l 0" ( 3 J) )
+ 59 - t¥% = '
ni(sij Siruj,r) tJ 0 on S (5)
u, - u¥ =0 on S" (6)
i i
.. = 1/2(u, +u, L) in V (7
1J ( 1, Jdsl )
iy 7 Cijkl(ekl - @akl) in V (8)
— * = ¥ — * = 3
uy v 0 & uy w 0 in V(t,) (9)
in the spatial state In these equations, . ti and so on
indicate small 1ncremental quantities superlmﬁose& upcn those of
the reference state (i.e., s%,, u?, t?). And a.=i. is the
acceleration vector, v¥ and wi* a%e the prescrl%ed displacement
vectors. 0O 1s an incrémental prescribed steady temperature field
and oy the strain-temperature coefficients at constant

stress Al% , V(ty) 1s used to designate V at t=t,.

Equations (1)-(9) describe completely the initial stress
problem of interest.

VARTATIONAL THEOREMS

To begin with, we express a principle of virtual work as the
assertation

0 - 0 0 _ 0
fv<sij t 54508y, AV [y o°(£] + £)8u dv - [, p°a,éu,dv
0 ¥
+ fs(ti + t¥)8u,ds (10)

in the spatial state. Here, Yqs denotes the Lagrangian strain
tensor, and it 1s given Dy J

.. = .+ (
YlJ EiJ 1/2 ul " j,r ) (11)

In equation (10), through the use of equation (11), we first carry
out the indicated variations, apply Green - Gauss integral
transformations and combine the resulting surface and volume
integrals. Next, we recall the usual arguments on incremental
field quantities (see, e.g., ref. 2), take into account equations
(1) and (2), and finally arrive at the variational equation of the
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form:

§ =83 =0 (12 a)
o
with
83,1 fv(sij + siruj’r),iéuidv + [y 0%y a,)8u,av
= 0 .
6J22 fS[(sij + Sirug,r)ni tjjéujds (12 b)

The variations of displacements are arbitrary and independent in
this equation. Hence, equation (12) leads evidently to the stress
equations of motion (4) in V and the natural boundary conditions
(5) on 3, as the appropriate Euler equations.

Variational Theorem: Let V+S denote a regular, finite region
of space (see, e.g., ref. 15) in Z, with its boundary S, and define
the functional J whose the first variation is given by equation
(12). Then, of all the admissible displacement states u.eC 55 if
and only 1f, the one which satisfies the stress equatiOn% o% motion
(4) and the natural boundary conditions (5) as the appropriate
Euler equations, renders &§J = 0.

This is a one-~field variational theorem in which equations (6)
-(9) of the initial stress problem remain to be satisfied as
constraints.

To include the rest of equations of the initial stress problem
in the variational formulation, we introduce dislocation potentials
and use Friedrichs's transformation, and we closely follow de
Veubeke (ref. L4). Thus, we obtain the following theorem.

Generallized Variational Theorem: Let V+S denote a regular,
finite region of space in £, with its boundary S (S'nS"=0 and
S'u8"=S), and define the functional I whose first variation is
given by

§I = alii + aJll (13 a)
with

= 0 - ¥
8T, IS' [(sij + Siruj,r)ni tjjéujds

+ fS"(ui - u¥)st,ds (13 b)
6122 = IV [Sij - Cijkl(ekl - @akl)jéeijdv (13 ¢)
81,5 = [+ [esy - l/2(ui,J + uj’i)ldsijdv (13 a)

£, .eC t.eC .and

Then, of all the admissible states of ui€C12’ 15%%00> Yi%%g07

485




s..eC., , if and only if, those which satisfy the stress equations
o%Jmo%gon (4) in V, the natural boundary conditions (5) and (6)

for displacements and tractions on S" and S', the strain-
displacement relations (7) in V, and the constitutive equations (8)
in V, as the appropriate Euler equations, render ¢§I=0.

In the generalized variational equation (13), the incremental
field quantities (s,., u., t.,,and e,.) are varied independently.
And this is a four-tield'vartatienat?theorem. The admissible
states are not required to meet any of the fundamental eguations of
the initial stress problem but the initial conditions (9) only.

BEAMS UNDER INITIAL STRESS

Geometry and Kinematics

A straight elastic beam 1s embedded in the space E. The beam
is of uniform cross section, A, and it occupiles a regular, finite
region of space V with its boundary S in E. The total surface S
consists of two right and left faces, A_ and A., and a cylindrical
lateral surface S.. The beam is referrdd to t%e X.-8ystem of
Cartesian convectgdd coordinates located at the centroid of A,. The
X,—axis 1s chosen to be the beam axis, and the x -axes indic%te
tﬁe principal axes of A which is bounded by a Jo¥dan curve C. The
beam 1s under an initial stress fleld 1In the reference state.

The incremental displacements of the prestressed elastic beam
are taken of the form:

M=1

- m.n (m,n)
ui(xj,t) ) . [x x5 ug ] (14)
m,n=0
(m,n) . .
Here, the u, are functions of x, and time, t, only. These

terms readiiy accommodate 1ow-frequén0y extensional, flexural and
torsional superimposed motions. However, it should be kept in

mind that, in the case of torsion, equation (14) can represent

only the displacements of beams of elliptic and circular cross-
sections, and for all other sections, more terms should be retained
in the expansion. The displacement field (14) is 1like the one
Mindlin (ref. 16) used in his recent derivation of the governing
equations for a non-initially stressed elastic bar.

Stress and Load Resultants

We define the stress resultants of order (m,n):

(m,n) _ m_n
Ty fA X)X, 8, ;dA (15 a)
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This represents the weighted, averaged values of stress tensor
over a cross section of the prestressed beam in the reference
state.

In addition, we introduce the body force, acceleration and
load resultants, and the moment of inertia of order (m,n):

(m,n) _ m_n 2 (m,n) _ mn g
Py = [, xyx, £,da, 1% = [, xx, t¥aA

M=1
A 7172 2 i p.q=0 m+p, n+q i

(m,n) o(m,n), _ m_n 0
[P Pt ] = ¢C X XV [Sai’ Sai]ds

M=1
R;(m,n) ) [ (pPi(m+p—1,n+q) + ng(m+p,n+q—l>)u§p,q)
P2 470 ( ) (D)
o (m+p,n+q) (p,q
+ P3 U3 ]
M=1
Ng(m’n) pzq=0 { [mPT°§m+p 2,0ta) (np+mq)T°(m+p 1,n+q-1)
’ o (m+p,n+q-1) o (mtp-1,n+q)
+ an22 + pT31 3
o (m+p,n+q-1)+ (p,q) o(m+p,n+q) (p,q)
*aT3s 5 Juy t T3 Ui 33
+ [(p+m)T°(m+p -lonta) (q+n)T°(m+p’n+q 1)
o (m+tp,n+q-1)- (p,q)
t 1333 L
M=1 _
N%im n) z [ (pTO(m+p 1,n+q) + qT%§m+p,n+Q—l))u§p,Q)
P,d=0
4 polmtp,nta) (p,a)

33 41,3 (15 b)

Prestressed Beam Equations = Instability

Now, we shall derive the prestressed beam equations by the
use of the generalized variational theorem (13) together with the
incremental displacement field (14). First, upon substituting
the expansion (14) into equation (13 a), we find the variational
equation (16). 1In this equation, the variations 6um 21 gre
arbitrary and independent for any choice of m(=0,1)%and n(=0,1),
and hence it evidently leads to the macroscopic equatlons of
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motion (17) as follows:

L M=1

y Ugm’n)éuém’n) dxy = 0, m,n=0,1 (16)
0 m,n=0 =
(m,n) _ n(m,n) (m-1,n) _ _(m,n-1) (m,n) o (m,n)
Uy T3i.3" - mTyy nTos e +Qy
+ p°(F§m’n) - Aém’“)> =0, m,n=0,1 (17)
Here, Q;(m’n) is the effective initial load given by
Q?(man) - N(.)<m3n) + R?(msn) (18)
1 1 1

Similarly, we evaluate the variational equation (13 b) and
obtain the natural displacement and traction boundary conditions
in the form

ugm,n) - ui(m’n> = 0, m,n=0,1 on Sl
(19)
re(mon) o (p{men) e M)y - g0 mn=0,10n A and A
i 3731 31 ? ? ? r 1

! = "= = = -
Here, S ArUAl and S Sl’ and n3 +1 for Ar and n3 1 for Al'

Upon using of equations (13 ¢) and (13 d) together with (14),
we have the strain distribution:

M=1
41 = ) xTxg g {m>n) (X3,t) (20 a)
J m,n=0,1 1J
with
(m,n) _ (m,n) (m,n)
. = 1/2 [u., 3 + u; 2
ij 72 Loy} %3,
+ (m+1)(éliu§m+l’n) + 61ju§m+l’n))
+ (n+l)(52iu§m’n+l) + 62ju§m’n+l)) 1 (20 b)
and the macroscopic constitutive equations:
M=1
m(m,n) _ (p,q) (p,a)
Ti37 " = Cigia pzq=1 Tmtp,ntq fx1’ = %@ 77 (21)
2

where we take the temperature increment of the form:
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otx) = 1 Al o™y (22)
m,n=0

Lastly, the initial conditions, based on equations (9) and

(18),

wlmen) _gulmen) g plmn) e (men) g5 L(t,) (23)

1 1 1 1

complete the beam equations (cf., ref. 17, where non-initially
stressed beams are treated) under an arbitrary state of initial
stress field.

The beam equations of equilibrium may be derived similarly
on the basis of equations (1)-(3); they are not written out here
in order to conserve space.

To examine the stability of the prestressed beam equations,
we first consider the beam with a set of initial forces x. Next,
we replace x by a prescribed set x¥. And, as usual, we arrive at
a system of linear homogeneous differential equations which
describes the instability problem under consideration. The sets
are defined by

x = (T;§m3n> in L, F;(m’n) in L, T;(m’“) on A)

x¥ = A(rox(msn) g g F§*<m’n) in L, T;*(m’n) on A)

ij
where A is a monotonically increasing factor, and whenever it

reaches certain values the equilibrating reference configuration
becomes unstable. The behavior of the eigenvalues of this factor

is to be investigated in each particular case of interest. Some
examples of instability will be reported elsewhere.

REFERENCES

1. Truesdell, C.; and Noll, W.: The Non-linear Field Theories
of Mechanics. Handbuch der Physik, Bd. III/3. Springer-
)
Verlag, 1965.

2. Bolotin, V. V.: Nonconservative Problems of the Theory of
Elastic Stability. Pergamon Press, 1963.

3. Washizu, K.: Variational Methods in Elasticity and Plasticity
Pergamon Press, 1974.

I, Fraeijs de Veubeke, B.: Diffusion des Inconnues

489




10.

11.

12.

13.

14.

15.

16.

17.

490

Hyperstatiques dans les Voilures a Longerons Couples. Bull.
du Service Tech. de 1l'Aeronautique, N. 24, 1951.

Koiter, W. T.: General Equations of Elastic Stability for
Thin Shells. Proc. Symp. Theory of Shells, Univ. Houston,
1967, pp. 185-227.

Budiansky, B.: Notes on Nonlinear Shell Theory. J. Appl.
Mechs., vol. 35, 1968, pp.'393-401.

Danielson, D. A.; and Simmonds, J. G.: Accurate Buckling
Equations for Arbitrary and Cylindrical Elastic Shells.
Int. J. Engng. Sci., vol. 7, 1969, pp. 459-468.

Kalnins, A.; and Biricikoglu, V.: Theory of Vibration of
Initially Stressed Shells. J. Acoust. Soc. Am., vol. 51,
1971, pp. 1697-1704.

Herrmann, G.; and Armenakas, A. E.: Vibrations and Stability
of Plates under Initial Stress. ASCE, J. Eng. Mechs.,
vol. 86, 1960, pp. 65-94.

D8kmeci, M. C.; and AlpD, Mg.: On the Dynamic Stability of
Composite Structures. Composite Materials in Engineering
Design, Amer. Soc. Metals, 1972, pp. 147-162.

Brunelle, E. J.; and Robertson, S. R.: Initially Stressed
Mindlin Plates. AIAA, vol. 12, 1974, pp. 1036-1045.

Brunelle, E. J.; and Robertson, S. R.: Vibration of an
Initially Stressed Thick Plate. J. Sound Vibration, vol. 45
1976, pp. 405-416.

Brunelle, E. J.: Stability and Vibration of Transversely
Isotropic Beams under Initial Stress. J. Appl. Mechs.,
vol. 39, 1972, pp. 819-821.

Sun, C. T.: On the Equations for a Timoshenko Beam under
Initial Stress. J. Appl. Mechs., vol. 39, 1972, pp. 282-
285.

Kellog , 0. D.: Foundations of Potential Theory. Dover Pup.,
1953.
Mindlin, R. D.: Low Frequency Vibrations of Elastic Bars,

Int. J. Solids Structs., vol. 12, 1976, pp. 27-49.

D8kmeci, M. C.: A General Theory of Elastic Beams. Int. J.
Solids Structs., vol. 8, 1972, pp. 1205-1222.




RESPONSE OF LONG, FLEXIBLE CANTILEVER BEAMS
TO APPLIED ROOT MOTIONS

Robert W. Fralich
NASA Langley Research Center

SUMMARY

Results are presented for an analysis of the response of long, flexible
cantilever beams to applied root rotational accelerations. Maximum values of
deformation, slope, bending moment, and shear are found as a function of
magnitude and duration of acceleration input. Effects of tip mass and its
eccentricity and rotatory inertia on the response are also investigated.

It is shown that flexible beams can withstand large root accelerations pro-
vided the period of applied acceleration can be kept small relative to the
beam fundamental period.

INTRODUCTION

In the design of large space structures, it is necessary to understand
the dynamic response of flexible, low-frequency structures. A typical design
problem is shown in figure 1, where a 100-meter beam is deployed from the
space shuttle orbiter for a proposed molecular vacuum facility. The design of
a lightweight boom requires a knowledge of the motion caused by input accel-
erations produced by control forces applied at the shuttle orbiter. The dura-
tion of these control forces is a small fraction of the first natural period
of the boom. The purpose of this paper is to present results of an analysis
of lightweight flexible booms to short-duration acceleration impulses and to
find the permissible values of these input accelerations. Effects of tip
mass magnitude, eccentricity, and rotatory inertia are included in the analysis.

DESCRIPTION OF ANALYSIS

The configuration analyzed in this paper is the cantilever beam shown in
figure 2. The beam of length L, depth D, stiffness EI, and mass per unit
length p has a tip mass M with a rotatory inertia Iy and an eccentricity
B. The analysis considers a constant rotational input acceleration A which
is applied for a time T and is then removed. The duration of input T
varies over the range from an impulsive input (Tg - 0) to a step input
(T, > ©). A nondimensional measure of the duration of input acceleration is
given by the ratio T./T where T 1is the period of the first natural fre-
quency of the cantilever beam. In the present study, the region with low
values of TO/T is of main interest. )
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Simple beam theory is used to obtain the differential equation of motion

4 2 2
pr A0 o |3TE&,Y) |y d76(e)

4 2

5 = 0 9]
oX ot dt

where 6(t) is the rigid body rotation and Y(X,t) is the elastic deformation
of the rotating beam. The deflection Y(X,t) satisfies the boundary conditions

Y(0,t) =0 N
0Y(0,t) _ 0
0X
3 2 2 3
- pr XLt Y(g"t) + M &B +1) & 2 4+ 9 Y(Lét) + 32 Y(L’E)} =0
90X dt at X ot
b @
2 2 2 3
e 8000 | g {EB gy 48 2 Y10 3 Y(Lét)J
X dt ot 0X ot
2 3
. IM[d g i Y(L,t%] .
Jt 90X ot
J
and the initial conditiomns
Y(X,0) =0
(3)
0Y(X,0) _ 0
ot
The rigid body rotation is given by
1 2
= = < <
6 5 At for 0 t TO
and " (4)
1
= - >
) ATO (t 5 TO) for t TO
In the analysis the elastic deformation Y(X,t) is given by
o0
Y(X,t) = ) a (£) ¢ (X) (5)

n=1

where ¢n(X) are the beam vibration modes for the cantilever beam and an(t)
are generalized coordinates. Results are obtained for elastic beam deflection
Y (X, t)

5X , bending moment M(X,t), and shear resultant Q(X,t)

Y(X,t), slope
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Modal equations for these responses were programed on a digital computer and
the maximum value of each was found at several stations along the beam.

RESULTS AND DISCUSSION

The number of modes required for convergence is indicated in figure 3 for
a beam without a tip mass subjected to input rotational accelerations with a
large enough variation of input durations to include all possible types of
responses. Although not shown, similar curves have been established for other
tip mass configurations. These curves give the maximum values of nondimen-
sional response parameters for the deflection Yg; and slope BYT/SX at the
beam tip and for bending moment M, and shear resultant Qp at the beam root.
Accurate calculations of these response parameters are obtained by using only
one mode for tip deflection, two modes for tip slope, and five modes for root
bending moment and shear resultant. A six-mode solution is used herein as a
completely converged standard of comparison.

The curves of figure 3, showing the effects of duration of acceleration
input, can be divided into two regions of response types. For short-duration
inputs (TO/T < 0.5) the maximum responses always occur after the input root
acceleration has been removed. For long-duration inputs (TO/T > 0.5) the
maximum responses always occur while the input acceleration is being applied
and approach the values for a step input (TO/T + ®) which have the values of
two times the values for the quasi-statie solution for rigid body inertia
loading. The nearly horizontal curves for T,/T > 0.5 show that in this
region the maximum values of beam responses can be calculated by use of the
simple quasi-static solution.

When the nondimensional parameters of figure 3 are used, the results for
nearly impulsive input acceleration (T./T + 0) are all compressed near the
origin. Inputs in this region are of particular interest since typical control
inputs are for short intervals of time while space booms have long periods.

To overcome this difficulty, the results of figure 3 are repeated in figure &4
by using a different set of nondimensional parameters. These parameters have
finite nonzero values for the pure impulse and are in agreement with calcu-
lated values from reference 1, which considers the instantaneous arrest of a
rotating cantilever beam. These response parameters that have input accelera-
tion impulse (T,A) in their nondimensionalizations, for short-dvration inputs
(TO/T < 0.5), do not have the large variation with T./T that is obtained by
using the response parameters of figure 3. For this reason, the nondimensional
parameters of figure 4 are used throughout the remainder of the paper.

Effect of tip mass on maximum response is shown in figure 5 for a pure
impulsive input (T./T = 0) and for a short-duration input (TO/T = 0.1). Curves
are shown for the nondimensional parameters for elastic tip deflection and
root bending moment. For short duration of input acceleration, the effect of
duration has very little effect on the elastic tip deflection curve but has
some effect on the root bending-moment curve. Note that effects of tip mass
are included not only in the tip mass parameter (M/pL) but also in the period
T. Even though the nondimensional response is shown to decrease with tip mass,
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the physical quantities increase as expected. For example, for a tip mass
equal to the beam mass, the root bending moment increases 75 percent and the
tip deflection 100 percent.

Effects of tip mass eccentricity and rotatory inertia are shown in
figure 6 for a pure impulse (TO/T =+ 0) and for a short duration of input
(TO/T = 0.1). Here nondimensional tip deflection and root bending moment are
shown as functions of rotatory inertia IM/MLZA for two values of eccentricity
B/L which are chosen as representative extreme values. Effects of rotatory
inertia and eccentricity also appear in two parts of this figure; first, in
the parameters IM/M12 and B/L and, second, in the period T which is used
in nondimensionalizing the response parameters. Again, for short-duration
inputs, the elastic tip deflection parameter is only slightly affected by
duration of input but the root bending-moment parameter decreases appreciably
with an increase in TO/T.

When a limiting design or maximum value is assigned to any of the calcu-
lated values of response, curves can be obtained to give maximum permissible
input acceleration as a function of structural parameters. For example, if
limiting values are assigned to the maximum bending strain € at the root of
a cantilever with a symmetrical cross section, the curves of figure 7 are
obtained which give permissible nondimensional input acceleration TT.A as a
function of span to depth L/D. The € = 0.003 and 0.005 curves bound values
of limiting bending strain that are appropriate for most isotropic and compos-
ite materials while the € = 0.001 curve represents a practical value of
limiting bending strain that has been reduced to take into account effects such
as buckling. The curves, shown for no tip mass, show that for given values of
L/D and €, a slightly higher value of impulse T.A is permitted if the
impulse is applied over a longer duration of time TO.

Sample curves with physical units are given in figure 8 for determining
permissible input acceleration A. These curves are shown for a beam with no
tip mass and for the reduced limiting strain condition (¢ = 0.001). The curves
show the variation of permissible input rotational acceleration with the lowest
natural frequency (1/T) and the span-to-depth ratio L/D for two values of
input duration T./T. The T,/T = 0.5 value represents the most severe case
where the responsé approaches that of the step input and the beam behavior can
be estimated from a simple quasi-static solution. The TO/T = 0.001 wvalue
represents a nearly impulsive input. As the duration of input decreases, the
permissible magnitude of input rotational acceleration increases. As illus-
trated in figure 8, a hundred-fold increase in permissible acceleration can be
achieved by applying very short-duration inputs.

CONCLUDING REMARKS

A modal solution has been obtained to study the response of long, flexible
cantilever beams to applied values of root rotational acceleration. Effects of
tip mass with various eccentricities and rotatory inertias have been included.
Results were obtained for duration of input that cover the range from near-
impulsive to the step function. A set of nondimensional parameters has been
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identified that facilitates looking at the response for the near-impulsive type
of input accelerations. When the duration of input is more than half the
period of the first natural frequency of the beam, the maximum response is
nearly equal to that of the step—-function input and is found to be twice the
response given by simple quasi-static analysis based on rigid body inertia
loading. Examples are included of application of these results to the problem
of determining maximum input acceleration so that design values of maximum
strain are not exceeded. These results show that large flexible booms can
experience high root rotational accelerations without inducing large strains
provided the duration of controlling forces are kept to a small fraction of
the period of the first natural frequency.
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Figure 1. Long, flexible boom for molecular vacuum facility.
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Figure 2. Flexible cantilever beam subjected to input rotational acceleration.
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Adjutant

OPTIMAL DESIGN AGAINST COLLAPSE AFTER BUCKLING

E. F. Masur
University of Illinois at Chicago Circle

*SUMMARY

After buckling, statically indeterminate trusses, beams, and other
"strictly symmetric" structures may collapse under loads which reach limiting
magnitudes. The current paper discusses optimal design for prescribed values
of these collapse loads.

INTRODUCTION

The principles and techniques of optimally designing structural elements
against buckling have been widely investigated. For example, there exists an
extensive literature on the problem of finding the least weight design for a
column of prescribed Euler buckling strength (see, for example, ref. 1,2,3),
and two recent publications (ref. 4,5) deal with the analogous problem of find-
ing the lightest beam to resist lateral buckling under prescribed loads. The
common feature of these problems is the fact that the structures considered are
statically determinate in the sense that the prebuckling stresses themselves
are independent of the design.

If the structure is indeterminate, and if the prebuckling stresses them-
selves are therefore affected by design changes, the problem becomes vastly
more complicated and no general optimality principles appear to have been
developed. On the other hand, it is likely that in cases of this type the
buckling load itself does not represent an important design criterion. Some
structures buckle under decreasing loads and are therefore imperfection-
sensitive. Others may buckle under increasing loads, and their actual strength
is again governed by factors other than the critical buckling load.

It has been shown that certain "strictly symmetric" types of structures
necessarily buckle under increasing loads, and that these loads often approach
limiting values as buckling deformations increase indefinitely. Examples of
structures of this kind are statically indeterminate trusses (ref. 6) or beams
buckling laterally (ref. 7), and recent numerical (ref. 8,9) and experimental
{ref. 10) results have confirmed the general theory (ref. 11). It may there-
fore be realistic to study the optimal design of such structures as their
collapse strength, rather than their buckling strength, is prescribed. The
object of this paper is to introduce a general discussion of this problem and
to indicate a method of solution.
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POSTBUCKLING MODEL

The postbuckling behavior of strictly symmetric structures has been
described in total generality in reference 11. It can easily be visualized
by means of a simple model consisting of a pin-jointed truss of n (say,
n=2) degrees of indeterminacy. If the external loads are increased by
increasing a common load parameter A, then the '"critical' load value is
reached when the compressive force in one of the bars (say, bar 1) reaches
the Euler value for that bar. Nevertheless, the load-carrying capacity of
the truss is obviously not yet exhausted. While member 1 buckles under
sensibly constant compressive force, M ™continues to increase until member 2
similarly starts to buckle. Collapse occurs when member 3 also buckles, and
A =AC then remains constant.

This simple process can be visualized within a format that is applicable
to all strictly symmetric structures. Let S, the vector of all bar forces,
be of the form N

S=2S_ +a S, (1)

in which, for simplicity, the self-equilibrated bar force systems §r are
selected so as to satisfy the orthonormality condition

ststg.
z r s 1
A.E.

i 11

=S 5. =8 (r,s=1,2) (2)

where the summation extends over all the bars and %5, Aj, Ej represent,
respectively, the length, cross-sectional area, and Young's modulus of the
ith bar. Moreover, if S, is the actual force system in the unbuckled
structure, (oap.=0), then

Sy S, =0 (r=1,2) . (3)

In the absence of any limitations on the tensile strength of any member,
the condition of "statical admissibility'" is given by

ST z -N (Nl:>0 = Euler force) , (4)
which, in view of equation (1), becomes

o S -Nl-xs; (i=1,2,...,n) (5)

i
T T

v

For given value of X -equations (5) define a statically admissible region in
the oy space, whose convex boundary consists of hyperplanes whose normal
vectors are proportional to S% (fig. 1). The region so defined need not be
closed. For definiteness we assume X >0 and Sé <0 (i=1,2,3,...,psn); in
that case the region '"shrinks'" for increasing values of A.
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For the sake of brevity we rule out the possibility of multiple buckling
modes; then the critical value A =2x; is reached when
rost= ont NS
0 0

) (i=2,3,...,n) . (6)

As bar 1 buckles under constant compressive Euler force the first (i=1) of
equations (5), in view of equation (6), becomes

1 1
0 S, = - (A-A)8 . (7)

At the same time the changes in the bar chord lengths are given by

812
8, = L
1 AlEl 1
. (8)
slzi
%_zA.E. (i=2,3,...,n)
1 1

in which 6i‘>0 represents the nonlinear effect of the curvature. Hence
=0 (r=1,2) , (9)

or, with equations (1), (2), and (3),

o =§ (r=1,2) . (10)

T

1 .1
T 6l

Finally, when equation (10) is substituted into equation (7),

Aor, = -F— 5! >0, (11)

confirming, once again, that strictly symmetric structures have stable points
of bifurcation.

For A <AX; the origin 0 of the coordinate system in figure 1 is in
the statically admissible region and therefore represents the actual stress
point. At bifurcation (A=X;) the hyperplane Bj] passes through the origin
and, for increasing values of X, the origin moves outside of the statically
admissible region, while the stress point P moves with Bj. According to
equation (10) the vector OP 1is parallel to the normal to B; and, because
of the convexity of the stable region, P is therefore closer to 0 than any
other statically admissible point.
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After bar 2 also buckles, point P 1lies on the intersection of two
hyperplanes, and

o =S 51 + 876! . (12)

Finally, collapse is reached, for X =2X., when the statically admissible
region has shrunk to the point P, representing the intersection of three
hyperplanes. In that case the constant values of a, are given by

2

c _ 1., 1 3 =
o = Srél + Srdz + SrGS (r=1,2) , (13)
and as collapse proceeds according to
8! = wéi (w+e) , (14)
the collapse mechanism satisfies
1l .c 2 .c 3 .c _
Sr 61 + Sr 62 + Sr 63 =0 (r=1,2) . (15)

We also note that, in general, this mode as well as the value of A, 1is
independent of initial imperfections.

OPTIMALITY

For the more general case we may identify the major state of stress by
means of

0 =Ag_+ a0 . (16)

oT [Qf? _.% %Z(Y)] =0 (r=1,2,...,n) (17)

in which C is the compliance density with respect to o, ¢&p 1is the
quadratic contribution to the major strain associated with the buckling mode
v, and the notation implies an integral or a summation over the entire
structure.

The condition of equilibrium is given in variational form by

K' () KK(SY) - o' 2, (vov) = 0, (18)
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where k is the linear buckling strain tensor and K the stiffness density
with respect to k. We note that both K and C are, in general, functions
of the design variable h.

For optimality we vary the design by replacing h by h-Fﬁ, subject to
the condition of constant volume

'__d_' .
Ve=mh=o0. (19)

Since the load is prescribed it follows that A =0; nevertheless, the major
stress system (identified by o,) and the buckling mode v may change.
Variation of equations (17) and (18) then leads to

dC . .
[“;Oh+(~:g o

5 - ’511(‘-":’)] =0 (r=1,2,...,n) (20)

S

T, - T . « T
KO KK(SY) -0 2y, (vov) =a o 2, (v Ev)

[k (v) k(a ) - A g—ﬁ]ﬁ (21)

in which A2 has been introduced as Lagrangian multiplier to account for
equation (19). Equation (18) represents _a homogeneous eigenvalue problem, and
equation (21) has therefore no solution unless the condition of integrability

. dk
dgon s, - [ ke - 12 26 = (22)

is satisfied. We note that equations (20) and (22) are similar to the equa-
tions derived for the initial buckling case in reference 4, except for the
last term in equation (20) representing the contribution of the postbuckling
condition.

Letting once again

Vo= oy, A=(MC (W o0) (23)

and assuming collapse under finite load and stress conditions we obtain

gz Ly = 0 (r=1,2,...,n) (24)

k! (v) KK(6v) - ol Do (v sv) = (25)
dx

Kv) 5 k(v )—Azjﬁ (26)
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of which the first two equations represent the collapse condition, and the
last constitutes the condition of optimality. It is noted that once again
this optimality condition requires constant strain energy density in the
design fibers. It is also noted that for collapse (in contrast to initial
buckling) the direct effect of a design change onthe collapse mode via the
compatibility conditions has disappeared. In other words, we see once again
a parallel behavior pattern between collapse through buckling and collapse
through perfect plasticity.

EXAMPLE

As an example to illustrate the theory, we consider a beam of length &
which is fixed in its own major plane at the right end and subjected to a
bending moment X at the simply supported left end. Collapse occurs when

_ 3 x
9 © )\c<l—§ £>+ %c

while the equations of equilibrium (25) assume the form

; (27)

R

Klug -0 B.=0 (KZB(':) " oul =0 (0sx<2) (28)

where u and B represent the lateral displacement and rotation, respec-
tively, with associated bending and torsional stiffnesses K;i and Ky. In
the development of equations (28), it is assumed that u=u''=8=0 at both
ends and that the effect of warping can be neglected. In terms of B alone
equations (28) reduce to

2
o
<
K

(580" + ¥,

B, =0 (0<x<8) (29)

The collapse condition equation (24) becomes
L 2
xu''B dx=f — o B dx =20, (30)
J; c c 0 K1 cc
while the optimality criterion equation (26) assumes the form
2

dK, /o dK
1(%Y 2 % 2 2aa
ah <1<1> Beran e T A @ (Osx<) . (31

For the specific case of a thin rectangular beam, in which Klzrbgh/lZ,
Ko =b3h/3, and A=bh, and in view of equation (29), equation (31) can be
written in the form
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2 hB'
ho= - 2 g? <~£> (32)

which lends itself well to an iterative solution scheme. It is also
interesting to note that equation (32) is satisfied for constant value of h
provided B =sinmwx/%2; this confirms the curious conclusion arrived at re-
cently by Popelar (ref. 4) that the prismatic design represents an optimum
for simply supported beams under constant bending moment.

Numerical results covering equations (29), (30) and (32) for the case
under consideration are currently being developed. Because of the variation
in the major bending moment, it is expected that in this case the prismatic
beam is not optimum, and that optimal design for collapse may lead to a
noticeable reduction in weight.
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OPTIMUM VIBRATING BEAMS WITH STRESS AND DEFLECTION CONSTRAINTS

Manohar P. Kamat
Virginia Polytechnic Institute and State University

SUMMARY

The fundamental frequency of vibration of an Euler-Bernoulli or a Timo-
shenko beam of a specified constant volume is maximized subject to the con-
straint that under a prescribed loading the maximum stress or maximum deflec-
tion at any point along the beam axis will not exceed a specified value. In
contrast with the inequality constraint which controls the minimum cross-
section, the present inequality constraints lead to more meaningful designs.
The inequality constraint on stresses is as easily implemented as the minimum
cross-section constraint but the inequality constraint on deflection uses a
treatment which is an extension of the matrix partitioning technique of pre-
scribing displacements in finite-element analysis.

INTRODUCTION

The problem of maximizing the fundamental frequency of vibration of beams
of a fixed, prescribed volume and likewise its dual problem have been investi-
gated by a great many investigators (see reference 1). It appears that no
consensus has been reached however, on the existence of non-trivial solutions
for beams with certain types of boundary conditions. While the numerical
experiments do strongly emphasize the existence of such solutions (see refs.

2 and 3), mathematical proofs have been constructed (see ref. 4) to prove
otherwise. This situation is rather unique since more often than not it is
the dismal failure of the numerical techniques in obtaining a solution, which
is only presumed to exist, that calls upon mathematics to establish its exis-
tence or non-existence.

The difficulty stems from singularities which result from vanishing stiff-
ness at some points along the beam axis. Although at such points the curvature
W,y assumes an infinite value,the products I(x)w,, and I(x)w,%X are nonethe-
less finite at such points. Furthermore, the function I(x)w,}Z{X is required to
be ‘integrable over the length of the beam. Fallacies of the mathematical
proofs, if any, could well result from a failure to take proper account of
these properties for the functions I(x) and w(x).

Finite-element solutions of reference 3, which incidently emphasize
existence even in the absence of any inequality constraints appear to have
very limited practical value because the resulting designs are far from being
useful as load-carrying members. Controlling the minimum cross section of the
beam does not appear to be the answer. The optimized beam must sustain a given
loading, presumably the worst loading, without exceeding a prescribed level of
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stress or a prescribed value for the maximum deflection. In general, the
cross section with the least area is not necessarily the critical section in
terms of stress nor are the constraints on deflections met in a rational and
an expeditious manner simply by controlling the minimum cross-sectional area
of the beam.

To generate more practical designs,it is deemed appropriate to require
that the optimum beam shall not (i) be stressed to more than a specified multi-
ple of the maximum stress or (ii) deflect more than a specified multiple of
the maximum deflection of the corresponding uniform beam of the same volume.
The present formulation allows the specification of an arbitrary vector of
stresses or of deflections, with those corresponding to the uniform beam case
being specializations of the arbitrarily specified vectors.

PROBLEM FORMULATION

The formulation is restricted to discretized finite-element models of
beams. Since the case of an Euler-Bernoulli beam can be obtained as a special .
case of a Timoshenko beam, the latter will be implied in the formulation.

The approach is exactly similar to the one used in ref. 3. It consists
of maximizing the minimum value of the Rayleigh quotient, w2, for a Timoshenko
beam subject to the equality and the inequality constraints. For a discreti~
zed finite-element model

[q1[M]{q}

where [K] and [M] are, respectively, the assembled stiffness and mass matrices
derived on the basis of a uniform cross-section beam element and {q} is the
mode shape of free vibration. In the case of a Timoshenko beam the stiffness
matrix accounts for the effects of shear deformations and the mass matrix
accounts for the effects of rotary inertia. Furthermore, for a general case,
the stiffness matrix may include the effect of a specified distribution of
axial loading and elastic foundation and likewise the mass matrix may include
the effects of a specified distribution of non-structural mass.

The optimization is to be carried out subject to the equality constraint
of a fixed, given total volume V which for a beam with elements each of
length 24 and cross-sectional area Aj, i=1,2...m,reduces to

m
% A g =V
. i'i (2)
i=1
The required relation between the cross—sectional area and the moment of inertia
is provided by a consideration of cross—sectional shapes for which

n
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p>0 and n being appropriate constants depending upon the type of cross section.

Stress Constraint

It is required that for a beam satisfying eqs. (1) through (3), the Ray-
leigh quotient of eq. (1) be maximized subject to the constraint that

{0} < K2 {6} ()

where {o} is the vectgr of nodal stresses for the optimum beam under a pre-
scribed loading and {o} is the vector of prescribed stresses. Since stress at
an internal node is discontinuous, the vectors {c} and {0} are assumed to be of
size 2m by one.

A beam element with a cubic transverse displacement field has a linear
variation of bending moment within an element. Thus, the maximum bending
moment within an element can occur only at the two nodes and hence,as in
eq. (4), only the nodal stresses need be monitored for the purposes of imple~
menting the stress constraints.

The stress o094 due to a bending moment My; at node 1 of element i is

Mpjey
oy =l )

For cross—sections specified by eq. (3% it can be easily verified that

Ci Ii n-1
5 = (g)2n (6)
c, I,

i i

where quantities with superscript O pertain to the uniform beam of total
volume V. Equations (5) and (6) together imply that

M

{o}=1{ n_-I-_ZL} (7)
(I)2n
Accordingly, eq. (4) can be written as
M -
{——E‘!‘_—I—} _<_k§ {c} (8)
(I)2n

The inequality constraint, eq. (8),can be transformed into an equivalent
equality constraint by Valentine's principle. An auxiliary functional which
is the original functional of eq. (1) modified by the two equality constraints
with the aid of undetermined Lagrange multipliers is constructed. In terms of
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non-dimensional quantities

where
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where £, AO, Ie and c0 are, respectively, the length, the cross-sectional area,
moment of inertia and distance of the extreme fiber from the centroidal axis
of the cross-section of the equivalent uniform beam of volume V. ¢% and ¢§
are the non-dimensional auxiliary functions of &=x/¢, which trans-

form the inequality constraints into equivalent equality constraints.

The requirement of the wvanishing of the variation of (mz)* with respect
to {q*}, A% and ¢* yields the necessary optimality conditions. Based on the
work of ref. 3,these conditions can be shown to be the following:

In those portions of the beam where the inequality constraint is not
effective, the conditions

(nU{)"i + U:i - Tii - nTiji)/Vi = constant, i=1,2...m (11)
hold true; while in other portions the stress constraint is effective. In
eq. (11) U*, and U*, denote non-dimensional strain energies due to pure
bending anElshear Sldeformations,respectively; T*, and T*, denote non-dimen-—
sional kinetic energy densities due to translaticnal and rotary inertia,
respectively, and V; denotes the volume of the i-th element.

Implementation of the stress inequality constraint in the optimization
procedure proceeds in a manner very similar to the one used for the minimum
cross—section inequality constraint of ref. 3. The moments of inertia of
elements leading to improved designs are determined by recurrence relations
designed to force the specific energy density of eq. (11) to be a constant
for all elements assuming initially that none of the elements are governed
by any inequality constraint. (See reference 3 for details of these recurrence
relations,) In each iteration, however, determining if the stress constraint
is effective or not requires a complete static stress analysis of the beam
to obtain the vector of nodal stresses. The cross-sectional inertias of
those elements which violate the constraint are then set equal to

2n " 2n
¥ = max[ (=)™, GEH™h (12)
* E
o741 954

The cross-sectional inertias of the other elements which do not violate the
inequality constraint are adjusted to meet the volume equality constraint,

eq. (2).

Although for statically determinate beams eq. (12) guarantees the
satisfaction of the stress constraint in any given iteration of the frequency
optimization the same is not true of statically indeterminate beams. For the
latter, one could conceivably iterate within the static stress analysis to
determine the appropriate element stiffnesses so as to satisfy the stress
constraints to within a desired tolerance. However, in view of the iterative
nature of the frequency optimization procedure,such additional effort is not
warranted especially if stiffness changes in successive iterations are kept
small enough.




In view of the equality constraint, eq. (2), it is obvious that the
maximum number of elements which may be governed by this constraint is at
most m1 for a consistent constrained optimization.

Deflection Constraint

In this case it is required that for a beam satisfying eqs. (1) through

(3), the Rayleigh quotient of eq. (1) be maximized subject to the constraint
that

{r} < kf; {r} (13)

where {r} is the vector of nodal displacements for the optimum beam under a
prescribed loading and {r} is the vector of prescribed displacements. Both
vectors are of size (2m+2) by one. As with the stress constraint the maximum
number of elements whose cross—-sectional moment of inertia can be arbitrarily
specified is at most m-1. Hence, under the limiting case of a strict equality
in eq. (13), the number of equations which imply prescribed displacements can-
not exceed m1 for a consistent constrained optimization.

In this case, the auxiliary functional in terms of non-dimensional quan-
tities is

m
2y = L9*]1[K*¥]{q*} _ Ak (T A% L% - 1
(w5 [q*][M*]{q*} 6 (iIp AF M )
ml 2 2.7 2 2 ()
= I AF[(r®) Tk (r¥) TR 7]
. it i § 1 i
i+l
where
% =r,/8 for translational degree of freedom
i i
(15)
=T for rotational degree of freedom

Proceeding as before the optimality conditions can be shown to be eq. (1l1) in
those portions of the beam for which the deflection constraint is not effective;
while in other portions the deflection constraint is effective. Since the
transverse displacement field varies cubically over the length of the element,
satisfaction of the constraint at the two nodes of the element does not
guarantee that the constraint is not violated in the interior, especially if
large changes in curvatures take place within the element. This is circumvented
by refining the discretization sufficiently.

Strictly speaking, the implementation of the stress constraint is, in
general, an implicit, nonlinear phenomenon which is rendered explicit by the use
of a very simple and approximate relation, eq. (12). No such approximations
are necessary for the implementation of deflection constraints. The problem
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in this case reduces to determing element stiffnesses which guarantee

prescribed displacements under prescribed loads. Let [K*] denote the assembled
matrix of the supported beam and let {r*} denote those nddal displacements which
violate the constraints, eq.(13). The matrix [K*] and the corresponding dis-
placement and load vectors are accordingly partitioned as

K&u K§B rg 63
=9 (16)

% * * *

KEa Xe | [ *2 g

where {Q*} and {Q%*} are the vectors of externally prescribed loads with the
latter béing assotiated with those degrees of freedom which violate the
displacement constraints and are accordingly prescribed as being equal to
{rg}. Equations (16) yield

[k% Mkl [RE 1(rs)= (0¥ (17 a)

s Hrth+ kg, 1= (o) (17 b)

Simultaneous solution of equations (17 a) and (17 b) vields
s 1, - _
[Kgsl{rg}—{Qg} [Kga][Kga] ({Qg} [Kgs]{rg}) = {Fg} (18)

If the elements of the matrix [K*_ ] are assumed to be functions of moments of
inertia of as many beam elements as the number of prescribed displacements

{r%}, then the system of equations (18) can be uniquely solved for the unknown
moments of inertia which guarantee the satisfaction of the deflection constraint,
eq. (13).

Those displacements which violate the constraints are prescribed as being
equal to the specified values. Invariably, more than one alternative will
exist for the specification of stiffnesses with prescribed displacements. If
both the degrees of freedom of a joint are prescribed,then the moments of
inertia of both elements common to the joint must be prescribed. However, if
a single degree of freedom is prescribed at a joint,then it is not obvious
which of the two elements should have a prescribed stiffness. Herein may lie
the nonuniqueness of the resulting solution for beams with certain boundary
conditions with certain loadings. A rational criterion for making such a
decision should be based on the magnitudes of displacements of one joint
relative to the other, since such relative displacements are functions of the
properties of the element alone. Accordingly, relative displacements of joints,
on either side of the joint whose displacement is prescribed, are determined.
The element with the joint which has a higher relative displacement is se-
lected for the purposes of prescribing the moment of inertia.

The procedure is straightforward from this point onwards. The moments of
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inertia of the constrained elements which guarantee the satisfaction of the
deflection constraints are obtained by the solution of eq. (18). The inertias
of the remaining elements initially obtained through the use of energy based
recurrence relation of reference 3 are finally adjusted to satisfy the
equality volume constraint, eq. (2).

RESULTS AND DISCUSSION

In general, because of the necessity of satisfying the equality constraint,
eqs. (12) and (18) do not guarantee the satisfaction of the stress and deflec-—
tion constraints exactly. This causes the optimization procedure to fail to
converge or converge extremely slowly to the optimum solution. This is avoided
by modifying the inequality constraints with a multiplicative constraint
factor, RB, which tends to unity with convergence to the optimum solution. The
parameter R is chosen to be the least of the ratios of the prescribed dis-
placements to the actual displacements in the case of displacement constraints
or to be the maximum of the ratios of the actual stress to the prescribed
stress in the case of stress constraints. B8 is chosen to be greater than
unity. Increasingly higher values of B8 imply increasingly stiffer designs.

Figures 1 and 2 portray the effects of the implementation of the stress
constraints on the optimum design of vibrating beams with two different support
conditions. TFigure 3 illustrates the effect of implementing the deflection
constraint on the optimum design of a vibrating cantilever beam.

Figure 1 considers the case of a cantilever beam subjected to two
different types of loading for the implementation of stress constraints in
the optimization of its fundamental frequency of free vibration. 1In one case
the loadlng consists of a concentrated load at the tip with k2 5 and {0}=
(GmaX) {1}. In the other case the loading con31sts of a concentrated
bending moment at the tip with k0 5 and {o}= (Omax) Toad 11} As expected, the
constraint corresponding to the moment loading is much more severe and
accordingly leads to a drastic reduction of the optimized fundamental frequency.
A comparison of these designs with the optimized beam without these constraints
emphasizes the importance of such constraints in optimal design.

Figure 2 considers the case of a clamped—clamped beam subjected to a con-
centrated load at the center with {o}= (Omax) {1} for two distinct values of
kg. If it were not for the stress constraints, the moment of inertia would
approach zero at the center of the beam as in reference 3. Severity of the
Stress constraints brings about increased quantities of material to be disposed
around the center of the beam.

Figure 3 illustrates the material distribution of an ogtlmum cantilever
beam subject to the deflection inequality constraint with k =5 and {r}= {r}oload
under a concentrated load at the free end of the beam. Since no singularity
exists with inequality constraints of either the displacement or stress type
and since the deflected shape of the beam under a concentrated end load or a
moment involves no change of curvature, it can be expected that the solution
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obtained using only ten elements for the cantilever beam model is a good
approximation to the optimum continuous model.

In conclusion, it may be remarked that with only a minor change of the

computer logic the formulation extends quite easily to cases wherein both
deflection and stress constraints are specified simultaneously.
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AN OPTIMAL STRUCTURAL DESIGN ALGORITHM USING OPTIMALITY CRITERIA

John E. Taylor
University of Michigan

Mark P. Rossow
Washington University, St. Louis, Missouri

SUMMARY

An algorithm for optimal design is given which incorporates several of the
desirable features of both mathematical programming and optimality criteria,
while avoiding some of the undesirable features. The algorithm proceeds by
approaching the optimal solution through the solutions of an associated set of
constrained optimal design problems. The solutions of the constrained problems
are recognized at each stage through the application of optimality criteria
based on energy concepts. Two examples are described in which the optimal
member size and layout of a truss is predicted, given the joint locations and
loads.

INTRODUCTION

In the field of optimal structural design, two general techniques for
finding the optimum design may be distinguished: mathematical programming
methods and the use of optimality criteria. In the present paper, an algorithm
is given which resembles a technique of mathematical programming in that it
proceeds by stages, with an improved design generated/at each stage. However,
in contrast to most mathematical programming methods, the improved design is
identified at each stage by the application of optimality criteria, rather than
by a search technique. 1In this way, the computationally expensive search pro-
cedure is avoided, yet the principle of approaching the optimum through a suc-
cession of small changes is preserved. The algorithm is explained and illus-
trated by application to the optimal design of a truss, where member cross-
sectional areas are taken as the design variables.

SYMBOLS

A cross—sectional area of truss member i
a slack function

D(p,S*) trial design corresponding to p and S%

521




E elastic modulus

F, x and y components of external loads applied at nodes and

J numbered consecutively

L augmented function

ﬂi length of member i

m total number of nodes

n total number of truss members, assuming each node connected to

every other node by a member

P potential energy

S value of lower bound constraint

\ specified volume of material

dj nodal displacements, numbered corresponding to Fj'

ei strain of member i

Ai Lagrange multipliers for area constraints

A Lagrange multiplier for volume constraint (also equal to specific

strain energy of fully-stressed members)

nk,nk(p,S) specific strain energy of member k, corresponding to
fully-stressed set p and constraint value S

ENERGY FORMULATION

Consider the problem of finding the maximum stiffness design of a planar
truss, given a specified total volume of material to be allocated to the various
members of the truss, and specifying inequality constraints on the truss members'
cross-sectional areas. The connectivity of the truss is unrestricted; however,
locations of nodes are specified beforehand, and the possibility of member
buckling is ignored. Taylor (ref. 1) and Hiley (ref. 2) have shown how a
problem of the type just described may be formulated by the use of the potential
energy function of the structure. In the present paper a similar energy for-
mulation will be used. The potential energy of the truss may be written

n 2m
P= 2 Lan -2 FS, 1)
i=1 j=1 1

(See the list of symbols for definitions of the parameters.)
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The specific strain energy Ny is related to the strain e by

n. = Ee2/2 (2)
i i
where E is the elastic modulus.
The volume constraint is
n .
2 AL =V (3)
. i7i
i=1

where V is the specified volume of material. The inequality constraints are
A, >S (4)
where S is the specified lower bound constraint.

It can be shown that the problem of maximum stiffness design is equivalent
to that of maximizing the potential energy P (refs. 1,3).

The constraints may be introduced directly into the problem formulation by
defining the slack functions a_ by

A -a =35, r=1,2,...,n (5)

and introducing Lagrange multipliers X and Ai to form the augmented function

n n
_ ) ) 2
L=P+ AV 12:1 AL + ]; A (8 - Ay +a)) (6)

Requiring the first derivatives of L with respect to 6k’ Ar’ and a. to
vanish gives

> e, o
& KiAi Bﬁ—k - Fk =0 (7)
nrJ&r - x/&r - Ar = 0 (8)
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Aa =0 (9)
while application of the Kuhn-Tucker theorem of non-linear programming gives
A <0 (10)
These equations can be shown to be both necessary and sufficient for

optimality (refs., 1,4,5).

A basic assumption about the optimal design problem formulated above will
now be m%de. It is assumed that for every value of S in the interval

0<SfV/(:E: Ki) an optimal design exists. That is, the optimal design is assumed
i=1

to be a function of S. Furthermore, this function is assumed continuous.

It is of interest to note that at least one optimal design can always be
found easily for the value of the lower bound constraint given by

n
S = V/(}E: Ki) (11)
i=1

For by equation (4) all admissible designs must satisfy

n
AJ .>_ SK = V/(Z '61)9 J = 1,2,-..,1'1 (12)
i=1

However the strict inequality in equation (12) cannot apply for any j since
this would violate the volume constraint in equation (3). Thus the optimal
design for the value of S in equation (11) must be the "equally-sized" design

n
A =V L), 3 =12...n
J i=1 *

OBSERVATIONS ON GOVERNING EQUATIONS

Inspection of the preceding set of governing equations (3)-(10) leads to
several observations of later use in this paper. First note that when a member
area A_ in the optimal design is strictly greater than the lower bound con-
straint value S, then the corresponding slack function a_# 0 by equation (5)
and Ar = 0 by equation (9), but then equation (8) yieldg
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n = A (13)

Thus all members with areas greater than S are stressed to the same level.

Note that by equation (2), equation (13) may be written as a linear equa-
tion in the strain €, and hence linear in the nodal displacements:

€. = i\’ZA/E (14)

Next consider a member t in the optimal design which is stressed below the
level A (egs. (8) and (10) exclude the possibility that an element in the
optimal design is stressed above the level A.):

n, <A (15)
Then by equation (8) At # 0 and so equations (9) and (5) imply
A =8 (16)

The implication of equations (14) and (16) may be summarized by saying that
the members of the optimal design may be divided into two groups: fully-
stressed members (n = A and A > S) and members at the constraint (n. < A and
A= 8S). As shall be discussea later in this paper, under certain conditions
borderline cases exist where a member is both fully-stressed and at the con-
straint.

A second observation about the governing equations for the optimal design
problem can be made with the help of the fully-stressed condition, equation
(14). 1Introducing equations (14) and (2) into the equilibrium relations (equa-
tion 7) yields

de on
r t
N\ 2)0E § :erKrAr 5+ S Loz - F =0 (17)
r k t k

where the first summation is over the set of fully-stressed members, and the
second summation is over the set of members at the constraint (hence areas equal
S). e, is the sign associated with member r (compression or tension).

Equations (14) and (17) have been formulated for the problem of maximum

stiffness design for a fixed volume of material V. The maximum specific strain
energy A is found as part of the solution. However, this problem may be shown

525




(ref. 6) to be equivalent to the problem of minimum volume design for specified
A. From now on in this paper it will be assumed that a value of X is specified.
The solution corresponding to this value of X may later be made to correspond to
some specified volume of material by multiplying all results by a common factor.

With A specified, equations (14) and (17) become linear equations in the
remaining unknowns 6, and A . Thus once it has been determined which members
are to be fully-stressed in' the optimal design, the areas and nodal displace-
ments may be caleulated by solving a linear system of equations.

FULLY-STRESSED SET AND TRIAL DESIGN

Suppose that a subset of the n members of the truss have specific strain
energy A, as well as specified signs, and do not violate nodal displacement
compatibility. These members will be called a '"fully-stressed set'.

Suppose that a fully-stressed set p has been designated and a value of the
lower bound constraint specified, S = S*. 1In general, it is not known before-
hand if p corresponds to an optimal design for S = S*. However, knowing p and
S*, we can nevertheless determine a corresponding set of areas and displace-
ments by writing equations (17) and (14) for the fully-stressed set p and then
solving these equations.

The set of areas and displacements found in this way will be written
D(p,S*) and will be called the "trial design corresponding to p and S*." Note
that by assumption the trial design is a continuous function of the lower bound
constraint, for fixed p.

Once a trial design D(p,S*) has been calculated, equations (10) and (4)
may be used to determine if the trial design is also an optimal design. If
D(p,S*) is optimal, then p will be called the "optimal fully-stressed set cor-
responding to S*,"

BASIS FOR ALGORITHM

Using the definitions just introduced, we can now discuss the basis for an
algorithm for finding the optimal design.

Starting with a fully-stressed set r and a value of S = S$* such that
D(r,S*) is optimal (finding such a starting design presents no difficulties, as
was observed earlier), S is repeatedly reduced and D(r,S) recalculated until a
value of S is found for which D(r,S) is non-optimal. Since the cause of the
non-optimality must lie in the incorrect choice of fully-stressed members, a
method is needed for identifying those members which must be added to or
deleted from the optimal fully-stressed set as S decreases. Such a method may
be derived from a close examination of the optimal designs in the neighborhood
of a point where the optimal fully-stressed set changes.
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Consider the particular case where a single member, for example, j, is to
be added to the optimal fully-stressed set. In figure 1, S = S, is the value of
the lower bound constraint for which n; first equals the constraint value A as S
is decreased from a value Sp slightly above S, to a value S; slightly below S..
Note that, for S = S o member j is an example of a "borderline' case referred
to earlier (Aj = SC &nd nJ = A).

If p denotes the fully-stressed set for which D(p,S) is optimal for
S >S , then D(p,S) is non-optimal for S >S5 >S since by hypothesis p

> ’
%cEs the %ully stressed member j. 1

S
1

Denote by q the fully-stressed set obtained from p by adding member j
and consider a member, for example, k, which belongs to neither p nor q. By
hypothesis,

nk(p,Sc) = nk(q,Sc) < X

Furthermore since n (p,S) and N (q,8) are continuous functions of S, it
follows that

nk(P,S) < A and nk(q,S) <A

for Sl <8< SC. For the same range of S, it must also be true that

nj(P,S) > A

since D(p,S) has been assumed to be non-optimal. Thus the member to be added
to the fully-stressed set p to form the optimal fully-stressed set q (for

< 8§ <8 ) may be determined by examining the non-optimal design D(p,S.) -
t%e member “to be added is that member with specific strain energy exceeding A.
The sign associated with the member j to be added is identical to the sign of
member j in D(q,S,), as may be established by a continuity argument similar to
that given above.

The preceding discussion dealt with the procedure for identifying the
member to be added to the optimal fully-stressed set as S decreases. An anal-
ogous procedure can be developed for identifying the member to be deleted from
the optimal fully-stressed set. Proceeding as in the previous paragraphs, it
can be shown that the members of the optimal fully—stressed set can be iden-
tified by inspection of a non-optimal design D(p,S,) the criterion being that
the member in p whose area is less than Sl’ is to %e deleted from p to form the
optimal fully-stressed set.

A final remark on the algorithm should be added here. In developing the

method for adding or deleting fully-stressed members, the assumption was made
that only one element at a time could be both fully-stressed and have area equal
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to the constraint value. In certain problems, especially where a high degree
of symmetry is present, this assumption may be violated. The argument pre-
sented above for identifying additions or deletions to the optimal fully-
stressed set is no longer generally valid. In the examples considered in the
course of this study, several instances were observed where more than one mem-
ber was fully-stressed and also at the constraint for the same value of S.
However, the algorithm had no difficulty in these instances and found the
optimal fully-stressed set. The information gained by examining the non-
optimal design in the vicinity of a change in the fully-stressed set was a
reliable guide in determining the elements to be added or deleted. Thus the
lack of theoretical justification for the algorithm in this situation does not
appear to be serious.

EXAMPLE PROBLEMS

In figure 2 an example is presented, involving sixteen interior nodes
loaded as shown and also two support nodes located far from the interior nodes
and not shown in the figure. The optimal design (shown in the figure) is self-
equilibrated. In this example, the algorithm was able to select the appro-
priate sixteen members comprising the optimal design from among all possible
members. In achieving this result, no advantage was taken of the symmetry of
the problem.

In figure 3, seven internal and four support nodes are specified, and a

single applied load is to be carried by the truss. The optimum design is found
to contain ten members and is reminiscent of a Michell truss.
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Figure 1.,- Specific energies near point where member j is to be
added to optimal fully-stressed set.

Figure 2.- Optimal truss, with sixteen interior nodes.
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Figure 3.- Optimal truss, with seven interior nodes and
four support nodes.
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A RAYLEIGH-RITZ APPROACH TO THE SYNTHESIS OF LARGE STRUCTURES
WITH ROTATING FLEXIBLE COMPONENTS*

L. Meirovitch** and A. L. Ha1e***
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

SUMMARY

The equations of motion for large structures with rotating flexible com-
ponents are derived by regarding the structure as an assemblage of substruc-
tures. Based on a stationarity principle for rotating structures, it is shown
that each continuous or discrete substructure can be simulated by a suitable
set of admissible functions or admissible vectors. This substructure synthe-
sis approach provides a rational basis for truncating the number of degrees of
freedom both of each substructure and of the assembled structure.

INTRODUCTION

The methodology for analyzing large complex structures has developed along
different 1ines. One approach represents a natural extension of methods de-
veloped originally for civil and aircraft structures, culminating in the fi-
nite-element method (ref. 1) and the component-mode synthesis (refs. 2,3). Al-
though rotation of the structure could be accounted for through rigid-body
modes, work using the approach of references 1-3 has been concerned mainly
with nonspinning structures. On the other hand, an entirely different approach
was developed in conjunction with spinning and nonspinning spacecraft struc-
tures. This approach was dominated by the fact that early spacecraft could be
treated as entirely rigid. Hence, in the early stages of development, struc-
tures were assumed to consist of point-connected rigid bodies arranged in "to-
pological trees" (refs. 4,5). With time, the rigidity assumption was relaxed
gradually by first allowing for flexible "terminal bodies" (refs. 6,7) and
then finally for all flexible bodies (ref. 8). A third approach to the prob-
lem of spinning flexible spacecraft was concerned with spacecraft consisting
of a rigid body with flexible appendages (ref. 9,10). This latter approach
can be regarded as an early application of the component-mode synthesis to
spinning structures.

Most papers concerned with structures simulated by point-connected rigid
bodies, such as references 4,5, proposed to derive the equations of motion by

*
Supported in part by the NASA Research Grant NSG 1114 sponsored by the
Structures and Dynamics Division, Langley Research Center.
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Professor. Graduate Research Assistant.
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the Newtonian approach, on the assumption that such a derivation was more suit-
able for digital computation. Of course, an early difficulty became immediate-
1y apparent in the form of the handling of interbody constraints, a major crit-
icism of the Newtonian approach in most circumstances. Another difficulty was
the relatively large number of degrees of freedom involved, a difficulty only
compounded by permitting various bodies to be flexible. As a result, there

are no meaningful ways of truncating the problem.

This paper is concerned with the mathematical simulation of large struc-
tures, where the structure is regarded as an assemblage of substructures. In-
deed, the mathematical model is assumed to consist of a central substructure
with a number of appended substructures, where some of the latter can rotate
relative to the central substructure. To ensure that the various substructures
act as parts of a whole structure, an orderly kinematical procedure is used
which takes into account automatically the superposition of motion of the cen-
tral substructure on the motion of the interconnected substructures. The sys-
tem equations of motion are derived by means of the Lagrangian approach, which,
when used in conjunction with the kinematical procedure just described, does
away with the question of constraints. The equations of motion are derived
from scalar functions, namely, the kinetic and potential energy, where the
first requires the calculation of velocities only. 1In addition, discretiza-
tion of the kinetic and potential energy in conjunction with linearization
ensures proper symmetry and skew symmetry of the coefficient matrices in the
final equations of motion. Using a Rayleigh-Ritz approach, the motion of each
continuous (discrete) substructure can be represented by a linear combination
of admissible functions (vectors) rather than substructure natural modes.

This approach is based on a stationarity principle for rotating structures de-
veloped recently by the first author (ref. 11). Finally, the truncation prob-
lem can be handled much more efficiently by the substructure synthesis ap-
proach, as the possibility of truncating the number of degrees of freedom both
of the individual substructures and of the assembled structure provides a much
more rational basis for an overall truncation decision.

KINEMATICAL CONSIDERATIONS

Let us consider a general structure consisting of a central substructure
C and a given number of appended substructures (see fig. 1), where the Tatter
are of three types: rigid and rotating relative to the central substructure
(type R), elastic and nonrotating relative to the central substructure (type
E), and elastic and rotating relative to the central substructure (type A).
Clearly, there can be more than one appendage of a given type, but we shall
confine our discussion to a representative one of each type, with summation im-
plied over the entire number of substructures. Although we consider here only
peripheral substructures, the formulation can be easily extended to chains of
substructures, as discussed Tater.

Let us introduce the inertial system of axes XYZ with the origin at 0 and
identify a system of axes Xgyczc with the origin at an arbitrary point C of
the central substructure. Then, denoting by wpe the radius vector from 0 to C,
by rc the position vector of any mass point in the substructure, and by uq the
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elastic displacement of that point measured relative to xcycze, and recognizing
that wye is in terms of components along XYZ and rc and uc are in terms of com-
ponents along xcyczc, the absolute position of the mass point in question in
terms of componen%s along Xxcycze is we = TgoWwoe *+ r¢ + Uc» Where Top is the ma-
trix of direction cosines between XYZ and xgyczg. Moreover, if Q¢ is the angu-
lar velocity of the frame xcycze relative to XYZ, the absolute ve?ocity of the
mass point is

We = TocWoe = (re + ug)9 * Yg (1)

where ;C + GC is a skew symmetric matrix associated with re + uc and QC is the
elastic velocity of the point relative to axes Xpyczc.

To calculate the absolute velocity of a point in the substructure R, we
must first obtain the velocity of point R as well as the angular velocity of
a reference frame Xcprycrzcr attached to the central substructure at R and with
axes parallel to the rotor axes xgypzp when at rest and when the central sub-
structure is undeformed. Due to geometry alone the orientation of axes XcrYcr
ZeR relative to x,y~z~ 1S given by the constant matrix of direction cosines
Lgr. Denoting by ucr the elastic deformation vector at point R of the central
substructure and assuming that the components ucpy, UCRys UCRz» Of UcR are small,
the rotation vector of axes Xxcrycrzcr due to elastic deformation can be writ-
ten in the form

T
du du du du du du

- _ CRz CRy CRx CRz CRy CRx

Ver(LgrYcr) = [: (2)

Yer  9%cp 9Zcp R 3Xerp R

where Vop 15 a skew symmetric differential operator matrix corresponding to the
curl operator. Hence, the matrix of direction cosines between axes XcrYcRZCR
before and after deformation is

: Sucry  2Ucpx _(3uCRx i aUCRz)
%R YeR PZcR  %er
L. _(auCRy i Mepy) : SUcrz  *Ycry (3)
(R e Mer/ Wer %R
PUcrx  *Ycrz _(éuCRz i a“cr&) :
| %%cR %R OYer %R _

Moreover, letting Lp be the matrix of direction cosines between axes XRyrzp
and XcpYcrZcrs the transformation matrix between axes xpyrzr and xgyczg is

simp]y TCR = LRLCRLGR'

Denoting by wp the angular velocity of the rotor relative to axes XcpYycr
zcr» the absolute angular velocity of xpyrzr in terms of components along
XRYRZR 1s

% = Ter % * g Verller Yer) * 4R (4)
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where the second term in equation (4) is the angular'velocity of axes Xcpycrzcr
due to the elastic motion of the central substructure. Because the rotor is
rigid, the position of a mass point relative to R is simply rg. Hence, the
absolute velocity of the point in question is simply

R T Ter Yer - R %R ()

where @CR is the velocity of point R obtained from WC by substituting the coor-
dinates of the point R for those of an arbitrary point.

Next, Tet us turn our attention to the substructure E and denote by xpypzp
any convenient set of axes with the origin at E and attached to the substruc-
ture. Using the analogy with equation (4), the angular velocity of XEYEZE is

= Tar Q L

% = Tee 9 * Yeelloe Yer! (6)
where Tep = LCpLGe. Moreover, by analogy with equation (5), the absolute ve-
lTocity o$ a mass point in the substructure is

We = Top Wep - (rp + updop + up (7)

where QE is the elastic displacement relative to axes XEYEzE.

The extension to elastic substructures rotating relative to the central
substructure is quite obvious. Letting gy be the angular velocity of the sub-
structure A relative to a set of axes xgaycaZca @ttached to the central body
at point A, the absolute angular velocity o Xpypzp is simply

~

2 = Tea 2 * La Yealla Yca) * ua | (8)

where Tep = Lalcalga» and the absolute velocity of an arbitrary point in A is
Wa = Tea Wea = (ra +updey + 4y (9)

Finally, let us consider chains of substructures. First, we note that
the angular velocity of a peripheral substructure and the absolute velocity of
an arbitrary point in a peripheral substructure are written in terms of the :
angular velocity of a set of axes attached to the central substructure and
with origin at the interconnecting point and the translational velocity of the
interconnecting point. As an example, see equations (4) and (5). To write
the angular velocity and absolute velocity of an arbitrary point of a sub-
structure in a chain, we simply replace quartities pertaining to the central
substructures, such as Teps 9cs VeR(LgR UCR)s and wer in equations (4) and (5),
by analogous quantities pertaining to the immediate?y preceding substructure
in the chain.
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SYSTEM DISCRETIZATION AND/OR TRUNCATION

In general, each elastic substructure possesses a large number of degrees
of freedom. In fact, if the substructure is continuous, then its number of
degrees of freedom is infinite. For practical reasons, we must limit the for-
mulation not only to a finite number of degrees of freedom but also to as small
a number as possible consistent with a good simulation of the system dynamic
characteristics. In this regard, we wish to use a Rayleigh-Ritz approach and
represent the elastic displacements of a continuous substructure by a linear
combination of space-dependent admissible functions multiplied by time-depen-
dent generalized coordinates of the substructure. If the substructure is dis-
crete, then instead of admissible functions we must use admissible vectors.
Note that it is common practice to use as admissible functions and admissible
vectors the eigenfunctions and eigenvectors of the substructure. In view of
the stationarity principle for gyroscopic systems developed in reference 11,
however, this is not really necessary, and a reasonable set of admissible func-
tions or admissible vectors should suffice. Hence, we shall use the discreti-
zation and/or truncation scheme

Y% v YET%EDE 0 AT %A (10)

where np, n » and np are time-dependent vectors of generalized displacements
with difiensfons n.s ncs and Ny, respectively, and oc»> ¢p, and op are 3 x Ne»

3 x Ng, and 3 x n, space-dependent matrices of admissible functions or admis-
sible vectors, as the case may be. Note that for a continuous substructure u
depends on continuous space variables and for a discrete substructure it de-~
pends on discrete space variables. In the latter case, the partial derivatives
involved in the quantity vu are to be replaced by corresponding slopes.

Although we have mentioned both continuous and discrete substructures in
the above, we have made no attempt to make clear distinction between the two
types of mathematical models. Neither have we elaborated on the various types
of discrete models, such as lumped models, finite-element models, etc. Of
course, the mathematical model used depends on the substructure mass and stiff-
ness distributions, but this is of no particular concern here. The reason for
this is that, independently of the mathematical model postulated for the sub-
structure, the general idea is the same, namely, to eliminate the spatial de-
pendence by the use of admissible functions or admissible vectors and to trun-
cate the problem by limiting the number of these functions or vectors.

LAGRANGE'S EQUATIONS OF MOTION

To derive Lagrange's equations of motion it is necessary to produce first
expressions for the kinetic energy, potential energy, and nonconservative vir-
tual work. Assuming that in equilibrium the central substructure C, substruc-
ture R, and substructure A rotate with the uniform angular velocities QC about
Zc, about zp, and Qp about JZpo respect1ve1y, while any other motion is zero,
we can write ge = Qg Lt O ec, wR = QR 4R * OR e Rs wp = 9p 2p + 064 eA, where
%5 is the vector of direction™Cosines between zc and XQZ QR 1s the vector of
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direction cosines between zp and XCRYCRZCR» @nd 2p is the vector of direction
cosines between zp and xcaycAzZcA- Moreover, o¢, ©p, and oy are 3 x 3 matrices
depending on oscillation of the axes Xgyczc re at1ve to XYZ, etc. Using equa-
tions (10) and retaining only linear terms, the absolute velocities of typical
points in the various substructures become

MeTh 9%t TR RYRIR
: : : : (1)
METE TR 9 s Mt A Rt A9
t T T'
where q¢ = [WOC’ ec K”C] » 9p = [WOC\ oC x”C leR] s g = [WOC, 8¢ “C nE]
and gy = [woc! ¢, ¢, %A ‘nX] are configuration vectors for the substructures.

The system kinetic energy can be written in the form

T=To+Tp+ T+ T, (12)
where
1 T . 1T = T= - .1 T=
Te =2 Jm Moo 9 =29 Y19 T 9% G2 9 T2 9% G2 U
c
1 T . 1T - T - .1 T=
TR =2 Jm RYR IR T2 R R R TR 2 %R TR R R
R (13)
1 T . 1T = T — 1T+
TE=7 ij MEWE A = 7 9 By GE Y e B et % By
_ 1 T 1T T - 1 —
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Note that the square matrices C; 1 > E1j, and A have partitioned forms,
with many of the off-diagonal sugmatr1ces equal to zero. Introducing the n-
d1mens1ona1 configuration vector for the entire system in the form g =

|
[w of | op :eX :ng .nE :n ] » where n is the number of degrees of freedom of

the sys em, the kinetic energy can be written in the general form
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. . . 1 T
T = %—q Ma+q Fg+ 79 K g (15)

~ ~ ~ ~

where M and Ky are symmetric matrices. Similarly, the potential energy for
the entire system is

1T
V=75g KV q (16)

where K, is a symmetric matrix, and the nonconservative virtual work has the
form

W = QT 8 (17)
where Q is the nonconservative generalized force vector.

In general, the matrices M and F depend explicitly on time. However, un-
der certain circumstances, such as when the substructures R and A are symmet-
ric, the time dependence disappears. A helicopter with a symmetric rotor ro-
tating relative to an airframe while in hover is an example, where the entire
rotor is considered as a substructure. Another possibility is to consider
each rotor blade as a separate substructure. 1In this case, a combination of
substructures forms a symmetric rotor and M and F will once again be constant
matrices.

Lagrange's equations can be written in the symbolic form

FE-c=0 (18)

where L = T - V is the system Lagrangian. Assuming that M and F are constant,
introducing equations (15) and (16) into the Lagrangian L, and using equation
(18), we obtain the Lagrange's equations of motion

Mg+ (FT - F)3 + (K, - K;)g = Q (19)
where FI - F is a skew symmetric matrix. Hence, equation (19) represents a
typical gyroscopic system. The natural frequencies and natural modes of the
complete structure and the closed-form solution of equation (19) can be ob-
tained by the methods developed in references 12 and 13. The interest here

is not so much in the response as in the dynamic characteristics of the sys-
tem, and in particular, the truncation effect on these characteristics.

THE EIGENVALUE PROBLEM AND TRUNCATION IMPLICATIONS

Introducing the 2n-dimensional state vector x(t) and the associated 2n-
dimensional force vector X(t) in the form

x(t) = [g(t) g"(t)1" . x(t) = [Q'(t) 101 (20)
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where 0 is the n-dimensional null vector, as well as the 2n x 2n matrices

)
;
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where 0 is the null matrix of order n, the n second-order differential equa-
tions of motion, equation (19), can be replaced by the 2n first-order differ-
ential equations in the state space x( t), where the equations have the eigen-
value problem

AIx + Gx = 0 (22)
It is shown in reference 12 that the eigenvalue problem (22) can be reduced to
the real symmetric form

Wlly = Ky ,  wllz = Kz (23)

where K = GTI-1G is a real symmetric matrix. The eigenvalue problem (23) is
in terms of two real symmetric matrices and is known to possess real eigen-
values. Assuming that I is positive definite, it follows that K is positive
definite, so that the e}genva1ues are not only real but also positive. More-
over, Ehe eigenvalues wr 1,2,...,n) have multiplicity two, so that to
each w4 belong the e1genvectors Yr and z,.. Because I and K are positive defi-
nite all the -eigenvectors are independent. In fact, they are orthogonal with
respect to the matrix I.

Next, let us use the Cholesky decomposition and write I in the form I =
LLT, w?ere L is a lower triangular matrix. Introducing the notation y,. = L'y,
zp = L'zp, (r=1,2,...,n), the eigenvalue problem (23) becomes

Yp = K'ypos wz z! = K'z! (24)

2
Yy Yy r Zr Ly

wh$re K! 7 %']KL'T is a real symmetric positive definite matrix, in which
L=t = (L71)

Denoting by v an arbitrary 2n-vector, Ray1e1gh s quotient associated
with the eigenvalue problem (24) can be written in the form (ref. 11)

R(v) = (25)

Because K' is real and symmetric, it is well known that Rayleigh's quotient
has a stationary value in the neighborhood of an eigenvalue. Note that the
symmetric formulation (24) permits us to conclude that a stationarity prin-
ciple exists also for gyroscopic systems.
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Next, we wish to examine the truncation effect on the system characteris-
tics. To this end, let us examine the eigenvalue problem Ay = iv, where A is
a real symmetric matrix of order N, and assume that the eigenvalues of A are

ordered so that Ay < Ap < ... < AN. Now, let us form the matrix B by deleting
the last row and column of A and write the eigenvalue problem Bu = yu, where
the eigenvalues y. (j = 1,2,...,N-1) are ordered so that yy < v, < ... < YN-1-

The question arisés as to how the eigenvalues Yj relate to the €igenvalues A5
To this end, one can use the Courant's maximum-minimum theorem (vref. 14) and
prove that

A S S A S S ees S ANLT S Yo7 S M (26)

We shall refer to inequalities (26) as the inclusion principle.

Now, let us return to the truncation problem. The 2n x 2n matrix K' was
obtained as the result of representing the spinning structure by an n-degree-
of-freedom system. Note that the rotational coordinates are also included in
these degrees of freedom. This representation is tantamount to the imposition
of a given number of constraints on the original structure. For example, the
first of equations (10) can be written in the form

c
ue =L i e (27)
i=1
so that the constraints imposed on the system are nC,nc+] - NCongt2 T ot T 0.
Truncating the series (27) by assuming that nC,nc = 0, we obtain a matrix K"
obtained from K' by deleting two rows and_the corresponding_two columns. If

the eigenvalues wg of K' are such that w]z Wt < e 5_wn2 and the eigen-
values gr of K" are such that 612 < Bp® < ... < By_1°s then we have
w%iB?imgf_Bgi...iwﬁ_]iﬁﬁ_]iwﬁ (28)

Note that the fact that the eigenvalues of K' and K" have multiplicity two is
automatically taken into account in inequalities (28). On the other hand, by
relaxing one constraint, i.e., by adding one term to the series (27), we ob-
tain a (2n + 2) x (2n + 2) matrix K"' which is obtained by adding two rows
and columns to K'. The eigenvalues a? of K"' are such that

a%iw%f_agiwgi...iaiiwﬁiaiﬂ (29)

The above developments permit us to conclude that the system estimated natural
frequencies tend to decrease monotonically with each additional degree of
freedom. At the same time there is a new frequency added which is higher

than any of the previous ones.

The question remains as to how to select the admissible functions or ad-
missible vectors. The first thing that comes to mind is to take them as the
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eigenfunctions and eigenvectors of the various substructures. In many cases,
the solution of the eigenvalue problem for a substructure can be quite a

task in itself, so that in such cases one may wish to use deformation patterns
only approximating the actual modes. This can be regarded as imposing addi-
tional constraints on the system, which tends to raise the natural frequencies
of the system, but this may be considered as a viable alternative, particular-
1y when the validity of the solution of the eigenvalue problem is question-
able. Experience with the Rayleigh-Ritz approach shows that the system natu-
ral frequencies are not very sensitive to the admissible functions used, which
can be traced to the stationarity principle. But a stationarity principle
exists also for discrete systems, so that the same conclusion can be extended
to admissible vectors.

The truncation by substructures has a clear advantage over truncation
of the structure as a whole. The reason is that it permits a more rational
judgement based on the substructure properties, such as the mass and stiffness
distributions. Generally one is interested in only a limited number of Tower
modes of the complete structure. Hence, a very stiff and 1ight substructure
is 1ikely to have less effect on the modes of the complete structure than a
flexible heavy substructure. Hence, one can truncate the first more severely
than the second. Some ideas for truncation can be obtained by estimating the
natural frequencies of the substructures. This by no means implies that one
need solve the eigenvalue problem for the substructures exactly. Indeed,
using a Rayleigh-Ritz procedure for continuous or discrete systems, in con-
junction with a preselected set of admissible functions or admissible vectors,
it is possible to obtain a reasonable estimate of the Tower frequencies of
each substructure. Note that the Rayleigh-Ritz method can be used to produce
and solve an eigenvalue problem of considerably lower dimension than that of
the full eigenvalue problem for the substructure. The estimated lower natural
frequencies of the substructure, when compared to those of other substructures,
can be used merely as a guide for truncation purposes. In fact, the eigen-
vectors serve no useful purpose and need not be calculated, as the same ad-
missible functions or vectors can be used to represent the substructure in
the generation of the eigenvalue problem for the complete assembled struc-
ture. This conclusion is based on results shown in reference 11.

If the dimension of the eigenvalue problem for the complete assembled
structure is still too large, and the higher modes are not really necessary,
then one can solve only for a given number of Tower modes by using such tech-
niques as subspace iteration.

CONCLUDING REMARKS

A procedure has been shown whereby the equations of motion for large
structures with rotating flexible components can be derived by the Lagrangian
approach. A fundamental consideration in the derivation of Lagrange's equa-
tions is the superposition of substructure motions by means of an orderly
kinematical procedure, which automatically eliminates the problem of con-
straints. Using a Rayleigh-Ritz approach, it is shown that each continuous
or discrete flexible substructure can be simulated by a finite number of ad-
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missible functions or admissible vectors and exact substructure modes are

not really necessary. This conclusion is based on a stationarity principle
for rotating structures developed recently by the first author (ref. 11). Fi-
nally, the substructure synthesis approach provides a rational basis for trun-
cating the number of degrees of freedom both of each individual substructure
and of the assembled substructure.

10.
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THE STAGING SYSTEM:
DISPLAY AND EDIT MODULE
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SUMMARY

The Display and Edit (D&E) Module, described in this paper, is oné of six
major modules being developed for the STAGING (STructural Analysis through
Generalized INteractive Graphics) System. Several remarks are included con-
cerning the computer environment and the architecture of the data base. But
the thrust of the paper is, clearly, to provide an understanding of the utility
of this module. This is accomplished by defining, to a reasonable level of
detail, the more prominent features of D&E.

INTRODUCTION

To assure an adequate appreciation for the D&E capabilities, it is impor-
tant to have a good conceptual understanding of STAGING and of the need for
STAGING. Over recent years, the finite element technology has literally
"burst" onto the scene, becoming one of the most powerful and popular analyti-
cal methods available today. One result of this popularity has been a proli-
feration of computer programs, all claiming to be unique or better than other
similar programs. In some cases, the claim is simply untrue. In more cases,
capabilities do overlap, but the programs are still unique enough to justify
their existence. In all cases, the programs cannot communicate easily with
one another and are cumbersome to use. The net result is that we have less
capability than we need, but more than we can use effectively. To cope with
this problem, efforts are underway to develop STAGING.

STAGING is a highly interactive capability intended to: (a) synthesize
the finite element methodology into a cohesive, user—oriented capability, and
(b) radically reduce the time required to conduct a finite element analysis.
The system will allow potential users to rapidly generate finite element models
and interpret analysis results independent of the analysis program chosen to
conduct the analysis. Although STAGING is specifically being aimed at the
finite element methodology, early consideration is being given for its eventual
extension to other technical disciplines.

STAGING (fig. 1) consists of six major modules; (a) Executive Monitor,
(b) Preprocessor, (c) Display and Edit, (d) Postprocessor, (e) Analysis
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Programs, and (f) Generalized Data Base. The Executive Monitor will serve as a
"traffic cop" to help a user find and use a particular capability, and to
ensure the proper flow of information between modules. The Preprocessor will
be used to generate bulk information for the analysis codes. D&E will provide
a host of interactive graphic utilities to assist in "fine tuning" previously
generated data, and effectively display the analysis results. The Postproces—
sor will allow easy generation of additional engineering information from the
basic output files of the analysis codes. The Analysis Module will simply be

a file of available design and analysis computer programs. And, finally, the
Generalized Data Base will provide efficient storage for all geometric and non-
geometric information associated with a particular analysis.

A number of general purpose subroutines are provided to facilitate the
transfer of information to and from the data base. Conversion programs are
written, using these subroutines, to allow each of the major system modules
to communicate with the data base through the Executive Monitor.

COMPUTER ENVIRONMENT

Hardware

The major hardware components include: a CDC 6000 séries computer, the

CDC CYBER Graphiecs terminal (ref. 1), and the CDC System 17 mini-computer. The
System 17 mini-computer is being used to perform a limited amount of local

processing (e.g. continuous 3-D rotation), while the CYBER Craphics terminal is
being used as the primary interface between the host computer and the user.
Within the year, D&E will also be accessible from a Tektronix 4014 scope.

In the more distant future, networking techniques will be used to make D&E
available to the .user community. A part, or all, of D&E will be downloaded
from a central host computer to a mini-computer and used in a local mode. The
current feeling is that networking can provide an effective answer to maintain-
ing large software systems, reduce the time required to streamline these same
systems, and consequently, provide more time for implementing new features.

Software

The code for most routines is FORTRAN, with the exception of a few spe-
cialized routines for character manipulation and permanent file management
which are written in 6000 assembly language. These routines are isolated in
the code and clearly identified. The program uses the CDC segmentation loader
(ref. 2) and operates in less than 60K octal words of core memory on the CDC
6600. Also, a strong emphasis is placed on isolating the graphics code to
reduce the amount of frustration for future implementations of D&E on other
graphics devices. And finally, the DTNSRDC data handler routines (ref. 3) are
being used to manage the data base.

544




DATA BASE

The data base provides a convenient mechanism for storing the geometric
model and all related information, including the analysis results. Function-
ally, the data base is composed of the following four levels: structures,
substructures, elements and nodes (fig. 2). This hierarchical concept is
important and is used extensively by D&E. Associated with the individual
items within a level is an attribute list that contains specific information
about each particular entity. The data base handler routines are used to allow
a user to interrogate and modify the data base efficiently and effectively. An
understanding of these basic concepts is all that is required to use D&E effec—
tively.

DISPLAY AND EDIT FEATURES

The power and flexibility of D&E can best be characterized by simply
defining the discrete capabilities of the module. To put some order into the
litany of features that is about to follow, they will be grouped into these
broader categories: (a) Substructure Definition, (b) Displaying the Input
Model, (c¢) Picture Manipulation, (d) Displaying the Results, (e) Editing, and
(f) Global Commands. The actual mechanics of the interactive process are con-
tained in a command tree (ref. 4). The command tree structures the user's
options, and allows the user to systematically progress through the D&E capa-
bilities. Examples of these capabilities-are illustrated in figure 3.

Substructure Definition

A substructure is defined as any arbitrary collection of nodes and ele-
ments that are present in the data base. The actual definition of a particular
substructure is left completely to the user, and is used by him to improve his
visual interpretation, and interaction, with that portion of the model in which
he is most interested. A substructure can be defined using one, or more, of
the following features:

a. Specifying a range of element/node numbers.

b. Specifying individual elements/nodes.

c. Specifying a range of values for any attribute.

d. Merging two or more substructures to form a new substructure.

e. Identifying geometric bounds.
Geometric specified bounds are defined using keyboard entries to specify an
area or volume in either rectangular, cylindrical, or spherical coordinates.

In a more limited sense, the lightpen can also be used to define the desired
area or volume.
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Displaying the Input Model

The input model can be viewed in one of three ways: in two-space (2D), in
three-space rotatable (3DR), or in three-space non-rotatable (3DNR). The dis-
tinction between 2D and 3D is obvious. However, a 3D model can be displayed as
a 2D model and vice versa. If the third coordinate is present in 2D, it will
be ignored, and if absent in 3D, it will be given a default value of zero, 3DR
and 3DNR present a more subtle distinction. The basic difference lies in where
the 3D to 2D projection is carried out. The CYBER Graphics terminal features
software (ref. 5) that will project a model using its mini-computer controller
to describe the picture. The small core memory of the controller severely
limits the size of the display. In the 3DNR mode the same projection is
carried out on the host computer. Consequently, it is possible to display
approximately twice the information in 3DNR as it is in 3DR. The tradeoff is
that it takes longer to generate the picture in the 3DNR mode. Therefore, the
3DNR mode is used only when the 3DR mode would generate too much information.

In addition to displaying the actual geometry, all of the attributes asso-
ciated with each entity can be displayed as alphameric or vector quantities
superimposed on the geometric model. Examples of alphameric quantities include
geometric and material properties. Examples of vector quantities include
forces, moments and constraints.

Picture Manipulation

Picture manipulation varies from 2D to 3D. The base capabilities of 2D
do, however, apply in exactly the same way for both 3D and 3DNR modes. These
capabilities include:

a. picture zooming and recentering. These functions are pefformed
through software in the controller and are considered LOCAL to the CYBER
Graphics terminal.

b. generating a split screen view (fig. 3a). Up to four views can be
generated simultaneously using the split screen option. Either a "free'" (in
which rotation can still occur) or "freeze" left side can be generated. In
either case, only the main picture can be zoomed or used for lightpen selec-
tion.

¢c. shrinking elements (fig. 3b). Each element on the screen can be
reduced about its center to 807 of its original size.

d. rescaling the picture. A new scale can be applied to the picture, or
the picture can be scaled to fill the entire screen.

e. restoring the original picture. This option removes the effects of
split screening and shrunk members, and restores the original picture

re~-centered.

It should be noted that 3DNR and 3DR have provisions for two more capabilities:

546




f. displaying of an X-Y-Z axis system. The axis system is centered in
the middle of the picture and points along the X, Y, Z axes of the model.

g. generating a perspective view.

Finally, 3DR adds a feature its name implies: a capability to rotate around
any of the three screen coordinate axes in a continuous or discrete mode. Con-
tinuous mode provides for automatic updating of the rotation. The discrete
mode allows the user to rotate the model quickly, but in fixed steps.

Displaying the Results

After conducting the analysis, the answers are stored in the data base in
the correct attribute arrays. Four basic. capabilities are available to help
the user review his results. They include X-Y plots, contour plots, deformed
plots, and dynamic plots. Of course, the entire complement of picture manipu-
lation capabilities is still available to help the user improve his visual in-
terpretation of the results. As with the input model display section, the user
need not pre-select the results displays he may wish to use.

The X-Y plotting capability (fig. 3c) is very flexible. The user may
interactively activate the following options:

a. line style c. graph style
1. points 1. 1linear X/linear Y
2. connected points 2. log X/linear Y
3. solid lines 3. linear X/log Y
4, short dashed lines 4, log X/log Y
5. long dashed lines d. titling
b. grid 1. X-axis
1. full grid 2, Y-axis
2. tic marks 3. graph title

As many as ten curves can be generated on each plot. The user may also plot
any attribute in the data base against any other attribute. And, finally,
provisions have been made for automatic rescaling to ensure a reasonable pic-
ture every time.

Contour plots are available for 2-D displays only. As with the X-Y plot-
ting capability, the user has control over the data to be plotted and the
labelling of the graph. Scaling is performed automatically. The user can
select the distance between contours, or use a value supplied by the system,
to generate the contour intervals.
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Deformed plots (fig. 3d) can be displayed alone, or superimposed on an
undeformed plot. Dashed lines are used to easily distinguish the deformed plot
from the undeformed plot. A magnification factor can be applied to the dis-
placements to improve their visual appearance.

The dynamic plot capability is provided to facilitate film strip genera-
tion. In operation, the user need only specify the number of analysis time
steps he wishes to process and the time-length of the film strip. The remain-
ing process is automatic. The user has the option of previewing the informa-
tion on the graphics scope or disposing it directly to an off-line plotting
device.

Editing

Provisions are available to allow a user to easily alter the contents of
the data base. Specifically, it is possible to add, delete, or modify any
value of any attribute list in the data using keyboard entries and lightpen
interaction. In a similar fashion, it is also possible to add or delete sub-
structures, elements and nodes from the same data base.

Certain convenience features have been added to accelerate the editing
process. For example, a user wishing to make the same changes to several dif-
ferent elements can activate the attribute lists of these elements by '"picking"
them from the graphics scope using the lightpen. Then, using the keyboard, the
user can enter the new value for the particular attribute he wishes to change.
The system will process this information and ensure that the change is reflec-
ted in each of the activated attribute lists.

Another useful feature is that the user can search a part, or all, of the
data base for a particular value, or range of values, and replace them with a
new one. A final example is that node points can be easily moved about in 2-D
space. This feature is particularly helpful for moving the interior points of
a model. An application of this feature could be to improve the aspect ratio
of certain elements in a 2-D model.

GLOBAL Commands

GLOBAL commands initialize features that are accessible to the user any
time during his session. Because these features will be made available to the
user in other STAGING modules, they will eventually be included as features of
the Executive Monitor. GLOBAL features that are currently available include:

a. STOP - the stop option ends execution of the user session. The option
must be "picked" twice to actually stop. The first '"pick" reminds the user
that the new data base has not been automatically catalogued.

b. SAVE DATA BASE - the current data base can be saved in one of two
ways. First, it is possible to overwrite the original copy of the data base.

In this case, the contents of the old file will be purged automatically and the
new data base will be catalogued with the same file name. The second option is

548




to enter a new copy of the file name by entering a new permanent file name, or
cycle number. This new name will then become the current permanent file name.

c. CLOCK - this feature allows the user to check on how much time he has
left in his current session.

d. STATISTICS - this feature provides information to the user to help him
track the size of his model. The information includes such things as the num-
ber of nodes, elements, and substructures, and the limit values of the display.

e. HELP - this feature can be used to provide further definition of the
"pickable'" options available to the user. It can also be used to display the
options at the next level up and the next level down in the command tree. And
finally, the HELP feature can be used to display the history of '"picks" a user
has made to get from the top of the command tree down to his current level.

f. HARDCOPY - the CYBER Graphics terminal has no inherent hardcopy capa-
bility because it is a refresh terminal. Consequently, software is provided to
process the current display to a suitable hardcopy device.

g. SKIP - this command is intended for experienced users who know their
way around the command tree. It allows the user to skip up as many levels as
the user has traveled through. The user is cautioned that subroutines normally
called, as he progresses through the normal RETURN mechanism, are not called in
the SKIP mode. Consequently, this feature can cause problems for the inexperi~
enced user later in the session.

h. COMMENT - the comment log is provided to improve communication between
the program developers and the program users, Users are encouraged to use the
log to ask questions, criticize, or make general comments. The comment log is
periodically reviewed by the program developer and has proved to be an effec~
tive mechanism for debugging, and streamlining, the D&E capability.

i. RETURN - this option re-activates the menu for the module the user was
working in before activating the GLOBAL command feature. The only exception is
when input is reauired for type-ins. In this case, RETURN must be "picked" and
the segment re-entered.

j. Error Recovery - occasionally an error will occur that causes the pro-
gram to abort on the host computer. The host will recover the error and ask
the user if he wishes to continue. If the user says yes, the screen will erase
and control will be transferred to that menu from which the abort was initia-
ted.

CONCLUDING REMARKS

The D&E module represents an important first step toward a much more ambi-
tious goal, that goal being to integrate the entire spectrum of design and
analysis computer programs, while maximizing the utility and efficiency of
these same programs. Efforts will continue to be made to streamline the D&E
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module and to add new features to it. But even in this unpolished state, user
reaction has been surprisingly good. This reaction tends to lend further cre-
dence to the old adage that a picture, in the right place and at the right
time, is still worth a thousand words.

The remaining five major STAGING modules are being developed concurrent
with D&E. It is estimated that, within this calendar year, the six major

system modules will be integrated to form the first tangible version of
STAGING.
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SOME CONVERGENCE PROPERTIES OF FINITE ELEMENT APPROXIMATIONS OF
PROBLEMS IN NONLINEAR ELASTICITY WITH MULTI-VALUED SOLUTIONS®

J. T. Oden
Texas Institute for Computational Mechanics
The University of Texas

SUMMARY

Some results of studies of convergence and accuracy of finite element ap-
proximations of certain nonlinear problems encountered in finite elasticity
are presented. A general technique for obtaining error bounds is also de-
scribed together with an existence theorem. Numerical results obtained by
solving a representative problem are also included.

INTRODUCTION

In this note I summarize some recent results obtained on finite element
approximations of certain nonlinear elliptic-boundary-value problems in finite
elasticity. The results I quote here are given in a more elaborate form else-
where. 1In reference 1, Ricardo Nicolau and I reported some results on a class
of problems in which bifurcations occur. There we consider cases in which,
for a given set of external forces, not only can multiple solutions occur,
but a loss of regularity can apparently result on certain solution paths. A
complete account of these results is to be published in a lengthier article.

The principal features of this work are (1) a priori error estimates and
proofs of convergence of finite element approximations of highly nonlinear
elasticity problems (these estimates are optimal), (2) error estimates for
multiple solutions of a nonlinear elliptic problem (these estimates are also
optimal, but the predicated bounds are different for different solution paths),
(3) a discussion of specific numerical results and certain special problems
connected with the numerical analysis of this class of problems.

NOTATION AND PRELIMINARIES

We shall employ the following notations and conventions:

w = (u,v,w) = displacement vector in a material body B, u, v, and w being che
- cartesian components of displacement in the material directions
X, Y, 2.

* This work was supported by the National Science Foundation under Grant ENG-
75-07846.
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Vw = gradient of w
W = strain energy per unit volume of the body in a reference configuration, W
being an appropriately invariant twice-continuously differentiable func-

tion of Vw.

V = V(y,p) = potential of the external forces per unit reference volume, p
being a real loading parameter.

SW/BVW = gtress tensor = Z(w)

2 M
i

U =,space of admissible displacements = {w j’(w + V)dXdYdzZ < oo W o= 0 on 9§}

(Here €} is a bounded open set of partlcles composing the interior of the
body B and 92 is its boundary)

To indicate various dependences, we also use such notations as Z(w),
VV(w,p), etc.

The potential V(w,p) is assumed to be of the form

V(w,p) = - (pf,y) + Vo(y,p)

where pf is a body force term and Vo(w,p) is nonlinear in w. To simplify
notations, we also introduce the operator

oV
<A(v~v,p),g>=[ (Z-n - 8‘: - 1)dXdvdz (1)
Q

Then, formally, A is given by

oV _(w,p)

= 2)

A(w,p) = - DivI(w) -

We are concerned with nonlinear boundary-value problems of the following
type: find w ¢ U such that

CA@,p),ny= (f,n) v €U (3)

We are particularly concerned with Galerkin approximations of (3). We
introduce a real parameter h, 0< h < 1, which, of course, corresponds to the

mesh parameter in finite element approximations, and denote {Uh} a
0<h<1

family of finite-dimensional subspaces of U such that J Uh is dense in U.
0<h<1
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The Galerkin approximation of (3) then amounts to resolving the following
problem: find v € Uh such that

cu (4)

4 —

~h

Upon subtracting (4) from (3) evaluated on 7
gonality condition: ~

= nh, we obtain the ortho-

{AGw,p) - A(w,,P)n > =0 v €U (5)

SOME HYPOTEHSES ON THE STRESS AND POTENTIAL OPERATORS

In many problems in finite elasticity, it appears to be justified to
make hypotheses of the following type concerning the operator A and the space

U:

I. The operator A of (1) maps U into its topological dual U'; U is a
reflexive Banach space with norm []w[[u.
II. The displacement field in the body corresponding to a given load p

is contained in a space U with stronger topology than U, U being densely and
continuously imbedded in U.

ITI. The operator A is weakly continuous; i.e. if {wn} is any sequence

converging weakly to W then A(yn,p) converges weakly to A(yo,p).

Iv. The operator A is coercive; i.e.
(A(w,p) w7
lim ——— = 4w (6)
> oo
[l [ Twll,,
V. A sufficient condition that IT holds is that A be a potential opera-

tor with a Gateaux differential DA such that <DA(wO-+9(wn-—wo)) °n,wn-wo> =0

as n > © for any sequence {wn} converging weakly to wos Vo < u.

VI. A sufficient condition for coerciveness is that there exists a
constant YU > 0 such that

{ - - VS - P _
(8G7y5p) = AGyupYs Wy =y > Y ey = [ - (7)
where Y, is a positive constant and p > 1.
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VII. There exist functions B: U x U >R and C: U x U + R, B weakly con-
tinuous, such that V WisW,sWg € u,

[<AGy5p) = AGw,,p) w0 < [ ]uy] [ 19y = | By (8)

[<AGwy5p) = AGw,,p), wy = wd| > v]|w - w,] IZ 9

where Y is a positive constant and p > 0.
Theorem 1 (Existence). Let either of the following hold:
(i) Conditions I, III, and IV above, or
(i1) Conditions I, IV, and V, or
(iii) Conditions I, III, and VI, or
(iv) Conditions I, IV, and VI.

Then there exists at least one vector w & U that satisfies (3) for each
pf CU'.m =

We emphasize that the operator A is not necessarily monotone.
FINITE ELEMENT APPROXIMATIONS AND ERROR BOUNDS

The subspaces Uh in (4) are assumed to be constructed using finite ele-

ment methods. Thus, the solution domain {2 is partitioned into E subdomains
{2 over which w is approximated by piecewise polynomials of degree £ k. 1If

e, ~ X _
w & UMU and v is its projection into Uh, it is well known that the subspace

Uh can be designed so that the following hold:

(1)
HW— W H <Ch0||w]|A (10)
~ ~h y— o ~

h being the mesh parameter and O a positive number.

(ii)
2
o 1]
~ V
> S G, v>0 (11)
o ||
u
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In (10) and (11), C0 and C, are constants independent of h.

1

We proceed to determine error bounds as follows:

1. The approximation error is e = w - wh:

IISI]U f_]]y - §h||u + ||Yh - §h||u (by the triangle inequality)
o}
<opllwll + e - wll, Gy o)
2.
~ 2 1 ~
oy = %15 < cqa ey = #01 (by (11))

< e’ 1y[I<aGw.p) - AG L)W - @ D[ by (9))

= ¢, 1y 0 [<aGp) - AG R ,w, - @] By (5)

C
1 ~ ~
< 5 BeE oy = B[] [y - ml] 7 by 6D

3. TFor sufficiently small h, we assume that

B(w,w, ) = B(W,Wh -w+ w)
= B(w,w) + O(H") >0 (12)
owing to the continuity of B(+,*). Thus
C,C
~ , 1l o,,0+V
- < (——)h w| | AB(w) 13
| |w yhllu_< —) IUIu W (13)

by virtue of (10), wherein B(w) = B(w,w).

4. Combining the result 1 with (13), we see that as h > 0, a positive

constant C2 exists such that

559




el < eyl lwll o0 + 7" B) (14)

Thus, for sufficiently smooth w, we obtain the optimal rate of conver-
gence for the nonlinear problem so long as v > 0.

Theorem 2. Let (8), (9), and (13) hold and let there exist solutions
to the nonlinear boundary-value problem (3). Let W € U be a finite element
approximation of w in a subspace Uh in possessing properties (10) and (11).
Then the approximation error e = w — w, satisfies the bound (14) as h - 0.

~ ~h
Moreover, if Vv > 0 and w is sufficiently smooth, the optimal rate of conver-

gence is obtained for the nonlinear problem.
AN EXAMPLE AND NUMERICAL EXPERIMENTS

The following example is described in [1]:

W= -E_tmh + B 074y —1)+E2()\2+v'2 - DP+E 074t -2y 4 E,O - 1)
(15)

1. 3
V= - pu +-Z K _pv (16)

where A = 1 + u' (u = u(x), v =v(x)), E ,***,E,, K are constants, and p > 0,
. o) 4 o) -
In this case,

L , °
1. U= {(u,v): f (W + V)dX < w}ﬂWi(I)
0 -

o L
wl(I) = Reflexive Sobolev space = { (u,v): .f (Iu',4 + ]v'|4)dx < oo
- 0

u(0) = u(L) = v(0) = v(L) = 0}.
1 L
4 . % 4
[l = ulley  + lvlleg = {f R AR
WA(I) N4(I) 70 0
[wll = tllulld, o+ [v]]d 1%
Ty L 1

4, (D WA(I)

3, U= wf(z)mr:ri(x) I=(0,1)

4. p =4, ¢ = min(k,£-1), v = 3/2
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The functions B(w,y) and C(w,w) are complicated functions of the compo-
nents u and v and are given in [1l]. 1In this case, the operator A is not mono-
tone.

Test problems were solved using piecewise linear finite element (k = 1).
The problem does not have unique solutions for p > p " Figure 1 shows the
computed solutions for various values of p for the case L = 10, El =1,
E, = 0.8, E, = 0.5, E, = -0.1, E, = -0.2, KO = 1.0. Observe that a bifurcation

2 3 3
is reached at p = 0.5.

4

Figure 2 shows the rate of convergence actually obtained in the analysis
computed by comparing the solution for coarse meshes with that obtained for
100 elements. As predicted, the rate of convergence is

0m® + 1™y = o + 1'% = om)
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ELASTO-PLASTIC IMPACT OF HEMISPHERICAL SHELL

IMPACTING ON HARD RIGID SPHERE

D. D. Raftopoulos
Professor of Mechanical Engineering
The University of Toledo

A, L. Spicer
Research Engineer, New Departure-Hyatt
Division of General Motors Corp.

ABSTRACT

This paper extends an analysis of plastic stress waves, originated by G.
I. Taylor in reference 1, for cylindrical metallic projectile in impact to an
analysis of a hemispherical shell suffering plastic deformation during the
process of impact. In that, it is assumed that the hemispherical shell with a
prescribed launch velocity impinges a fixed rigid sphere of diameter equal to
the internal diameter of the shell. Particularly this study is directed in
order to investigate the dynamic biaxial state of stress present in the shell
during deformation.

The results of this analysis are compared with Taylor's reference 1 and it
has been found that this analysis i1s an extension of the one-dimensional
analyses of references 1, 2, 3, and 4, to spherical coordinates. It is valuable
for studying the state of stress during large plastic deformation of a hemi-
spherical shell.

INTRODUCTION

The obJect of this paper is to develop an analysis of plastic hemispheri-
cal stress-wave propagation and to use this analysis for determining the
dynamic biaxial yield stress. The,Tresca yield criteria is used as the yield
condition. Higher order terms are included in the derivations; thus, this
analysis is valid for large deformations.

G. I. Taylor in reference 1 used the governing physical laws and the
geometry during plastic deformation of the cylindrical projectile to formulate
differential equations which are solved in order to determine the dynamic yield
stress in impact. This analysis of a hemispherical shell impacting a fixed
rigid sphere, of diameter equal to the internal diameter of the shell, is
similar to the analysis of a cylindrical projectile impacting a rigid target of
references 1, 2, 3, and 4. In fact, in all these cases during impact it is
assumed that when the stress rise exceeds the elastic limit of the material,
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two waves are generated. The first of these is the elastic wave, which travels
with a velocity c¢. It is followed by the plastic stress wave which travels
with a slower velocity v. Through an analysis of the propagation of these two
stress waves, a method is formed which can be used to determine the dynamic
yield stress of the material of a hemispherical shell. The proper choice of
the time increment, dt, simplifies the analysis greatly. The choice is to make
the time increment equal to the length of time required for the elastic wave to
complete a double passage of the elastic zone. If the difference equations are
derived by utilizing this time increment, which is eliminated by combining the
derived difference equations, the governing equations which are derived are
free of this time increment. This mathematical approach, for the biaxial state
of stress of the hemispherical shell, closely parallels Taylor's analysis of
the cylindrical projectile.

NOMENCLATURE
AO Projection at the elastic-plastic boundary undeformed area at time t
A Projection at the elastic-plastic boundary deformed area at time t + dt
a Initial inside radius
b Initial outside radius
c Elastic wave velocity
dh Incremental plastic radius
dr Incremental elastic radius
dt Time for a double passage of elastic region by elastic wave
E Young's modulus
h Thickness of plastic region at time t
Ty Initial elastic length of shell in the radial direction = b - a
ry Final total length of shell in the radial direction
r Thickness of shell in the elastic zone at time t
R Final thickness of the elastic region

Sl Dyhamic yield stress - calculated by the approximate method
S Dynamic yield stress - calculated by the exact method

t Time

564




U Initial radial velocity due to launch velocity

u Particle velocity in the elastic region

v Absolute velocity of the plastic wave front
Y Yield stress in uniaxial tension

€ Initial radial strain

€ Radial strain at time t

o) Density

v Poisson's ratio

ANALYSTIS
Problem Description

A hemispherical metallic shell strikes with a prescribed velocity a rigid
sphere (of diameter equal to the internal diameter of the shell) which is
permanently fixed at a base retaining zero velocity during the process of
impact. During this impact, a radial motion is directed from the internal sur-
face of the shell toward the external surface of the same. The radial particle
velocity of the internal surface of the shell is initially the same as the
impact velocity and is denoted by U. If the biaxial stress exceeds the elastic
limit, two waves are generated at the internal surface of the shell. The first
wave is the elastic wave which travels with velocity c. The second is the
plastic wave which travels with velocity v. The elastic compressive stress
wave, which propagates radially outward in the elastic region with velocity c,
will reduce the impact velocity U to U-(S/pc). During this time, the stress
reaches the elastic limit. This elastic wave will reflect at the external
surface of the sphere, resulting in an elastic tensile wave being superposed on
the compressive elastic wave. The material which has been passed by this re-
flected elastic wave is stress free and has a velocity equal to U-(2S/pc). At
the particular time when this wave reaches the elastic-plastic boundary, the
shell is in a condition similar to the initial impact, except that its speed
is equal to U-(2S/pc) and its elastic thickness is less than the original value.
At this time, it is assumed that the plastically deformed material will be
attached to the sphere and acts on the elastic part of the shell as a rigid
material. This continues until the speed of the shell becomes equal to zero.
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Assumptions

In order to work out the mathematical analysis of this problem, several
basic assumptions are needed.

First, for axially symmetrical analysis, the shell must be symmetric with
respect to its axis of symmetry and maintain this symmetry during the process
of impact. The second assumption is that the elastic strain is negligible.
This assumption is valid if the plastic strain is large, thus making the elas-
tic strain very small in comparison with the plastic strain. Along the same
lines as the previous assumption, the third assumption is that the material is
taken to be perfectly plastic. Although no material behaves exactly in a
perfectly plastic manner, some materials approach this type of behavior at high
strain rates. This dynamic-plastic stress-wave analysis is for extremely high
strain rates. Thus it is possible to assume that the material is perfectly
plastic without the loss of much generality in the solution. The fourth
assumption, which is usually made in plasticity problems, is that the density
of the shell material remains constant. The fifth and final assumption is
that the material in the plastic region, after being deformed, does not possess
elastic properties; thus it behaves as a rigid material with zero velocity.

Physical Laws

By considering the problem description, and assumptions, the governing
physical laws can be formulated.

Choose the time increment, dt, to be equal to the time required for a
complete double passage of the elastic wave through the elastic region. Since
the length of material in the elastic zone is defined as r and the elastic wave
veloclty is ¢, 1t follows that

dt = 2r/c (1)
where

¢ = (B (1-v)/ {o(1+v)(1-2v)}/2

dh = v (2r/c) (2)

dr = —(u + v) (2r/c) (3)

du = - 28/(pc) (L)

Using equation (1) to eliminate ¢ from equations (2), (3), and (4) results in

&, (5)
L= (u+v) (6)
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S~ - 8/(pr) (1)
for conservation of mass

Av = (u + v) A (8)
The momentum equation reduces to

S (A - AO) = 1/2(A + AO) (u+v)up | (9)
The radial strain is defined, at the plastic boundary, by

e=1-A/A (10)
Combining equations (8), (9), and (10)

ou?/s = 2 €2/(2 - ¢€) (11)
Combining equations (6), (7), (8), and (10)
& = pur/(se) (12)
Integrating equation (12)

Loge(rz) = Uflfe a{e?/(1 - €/2)}

=h/(2 -¢) -2 Loge (1 -~ ¢/2) + Constant (13)
At time t =0, u=U, r =2 , and € = el; thus equation (11) and equation
(13) become, respectively
oU2/s = 2 si /(2 = ¢ ) (14)
1

Log (r/r )2 =L4/(2 - ¢) - 2 Log_ (1 - ¢/2) = 4/(2 - ¢ )
e o] , e o 1
+ 2 Log_ (1 - 51/2) (15)
When all motion has ceased, r = R, and € = 0, and R can be measured.
Log (R/r )2 =2 - 4/(2 —¢ ) + 2 Log (1 - ¢ /2) (16)
e o) 1 €. 1

Combining equations (5), (6), (8) and (10)

r
h = -‘”dh = - (l‘— ). dr ‘ (17)
r -
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Combining equations (7), (11), and (1L)
€
Ut/ro =¢ (1 -c¢ /2)'1/21' Yr/r (1 - e/W)/(1 - e/2)3/2ds (18)
1 1 o]

If uniformly spaced values of g, are plaged in equations (14) and (16),

oU2/S vs R/r_ can be plotted. Evaluation of equation (17) for h is accomp-
lished by Simpson's rule integration. Results of these calculations are
plotted in Figure 1.

Two different methods of integration were employed to evaluate the inte-~
gral equations (17) and (18). The first method used was a Simpson's rule
integration. Results for various e, are plotted in Figure 2.

The second method of integration was using the asymptotic expansion of
the integrals. References 5, 6, and T provide information on asymptotic
power-series expansions. Values obtained by asymptotic expansion agreed well
with those obtained by Simpson's rule integration.

To develop a simple formula for calculating the dynamic yield stress from
measurements made before and after the impact, it will be additionally assumed
that the plastic boundary propagates at a constant velocity from the inside
radius a to its final position. The velocity of the plastic boundary equals C.

Combining equations (6) and (7)

du

—_— = +

T S/{pr(u + C)} (19)
Integrating equation (19) results in

S/p Log, (r/ro) =1/2u?2 + Cu - 1/2U2 - C U (20)
When u = 0, r = R and equation (20) becomes

8/p Log, (R/ro) =-1/202 - C U (21)

At time t = 0, u = U. Assuming u decreases to zero uniformly with time,
in a time equal to T

T=(r -R)/C=2(r -1 )/U
1 o 1

Rearranging c/U =1/2 (r - R)/(ro -r )
1 1

Therefore, equation (21) becomes

Sl/pU2 = (ro - R)/[2(rO - rl) Log, (rO/R)] (22)

The fact that the decrease in u is not uniform results in an error which
can be calculated. Combining equations (3) and (20)
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becomes

Letting

where T is the
equals zero

so that

Letting

results in

Values of

6. Equation (26) can

ar) 2
dt

When all motion has ceased, u =0, r =

= 28/p Loge (r/ro) + (U + )2 (23)

R, and € = 0. Therefore, equation (21)

25/p Log, (R/r ) = ¢ - (U + C)? (2h)
2S/p = a?
K= (U+C¢C)la
R; = r/ro
t] = ut/ro
Ty = aT/rO
time from the initial impact until the plastic zone velocity
dRy
— = (K% + Log, Rl)l/2
dt,
1
2 1/2
T, = ./~ . 5 , (K +-Lo e Rl)de (25)
=) -K
exp[(a ]
72 = K2 + Log, R)
K
w2 2
T =2 e” az (26)
C/a
K
_x2 2

e Jr e dZ have been tabulated in references 5 and

be expanded using this function, F(K), to give

Ty = 2 {F(K) - Exp (-K? + (C/a)2) F(C/a)} (21)

Previously it was assumed that the plastic boundary moves with a constant

velocity C, or

CT = r,o- R
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or in dimensionless form

Cla Ty = rl/ro - R/ro (28)
Rearranging, equation (24) becomes

Loge (ro/R) = X2 - (C/a)? (29)

Since R/r. and rl/ro can be measured, C/a, U/a, K and T can be evaluated
from equations ?27), (28), (29), and

K = U/a + C/a (30)
Combining equations (27), (28), and (29)

rl/ro =2 C/a F(K) - {2 C/a F(C/a) - 1} R/r_ (31)
Since

28/pU% = 02/U% = 1/(K - C/a)?
dividing this equation by equation (22) therefore results in

s/s_ = (x, - r )/(xry - R) [Log, (r /R)/(K - C/a)?] (32)

Due to the complexity of these equations, the correction factor, S/Si,
cannot be determined directly. To determine S/S; given R/r and rij/r_ it is
easiest to first form the curves of S/S; vs ri/r_ with contours of equal h/r .
Values for this curve can be obtained by taking g value of R/r and values o
C/a which cover the desired range. Therefore, using equation ?29), equations
(31) and (32) can be evaluated.

The asymptotic expansion of F(K) is
F(K) = 1/(2K) + 1/(4k3) + 3/(8K>) + 15/(16K7) + ... (33)

Through some complex manipulations, it can be shown, although it will not
be presented here, that as C/a > «

rl/rO - 1.0 (34)
and
8/8; =2 {1/(1 - R/r_) - 1/(Log (r_/R))} (35)

From this equation, the limiting values of S/S; can be determined as
I‘I/I'o - 1.0.

This completes the analysis of the problem. Thus, if values of r , rp,

and h are given, the dynamic yield stress can be calculated for the hemispheri-
cal shell.
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DISCUSSTION AND CONCLUDING REMARKS

In this paper, a method is developed to investigate the propagation of
plastic stress waves in a hemispherical shell. In particular, this study
investigates the dynamic yield stress due to the impulsive loading initiated
at the interface of the shell. This mathematical approach, for determining
the biaxial state of stress of the hemispherical shell, closely parallels
Taylor's analysis of the cylindrical projectile. It is interesting to note
that if all higher order terms were dropped from this analysis, the results
would be the same as those of reference 1 except that the components are
defined differently. Graphs which are drawn from this analysis in Figures 1
and 2 are similar to Figures 2 and 3 of reference 1. In addition, comparison
between the results of this analysis and the analysis of reference 1 is
possible. In fact, when these two analyses are compared, one can observe that
the results of the present work parallel the experimental data more closely
than the results of reference 1. This is due to the fact that one~dimensional
analysis may not possibly explain the spreading out of the projectile near the
target. This phenomencn requires taking into account the inertia in the radial
direction.

The derivation of the yield stress correction factor is almost identical
with the results of reference 1 on page 297. Singularities were observed
which were not discussed in reference 1. The discontinuities occurred just
before r,/r » 1.0. If the discontinuity is ignored, the results are similar
to those oforeference 1.

A method has been presented by which the dynamic yield stress can be
calculated, using the Tresca yileld criteria, from the radial expansion of a
hemispherical shell. The approximate yileld stress can be calculated from
equation (22), if the initial conditions, final conditions, U, and p are
specified. The dynamic yield stress could also be calculated from Figure 1.
Thus, the dynamic yield stress can be determined if certain initial and final
experimental conditions are specified, including the launch velocity, density,
and geometrical considerations of the shell. The motion of the plastic
boundary, as shown in Figure 2, is similar to the results obtained in Figure L
of reference 8. Their choice of coordinates is different, which accounts for
many of the differences between the shape of their curve and of Figure 2.
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LARGE DEFLECTIONS OF A SHALLOW CONICAL MEMBRANE

Wen-Hu Chang and John Peddieson, Jr.
Tennessee Technological University

SUMMARY

This work 1s concerned with large deflections of a shallow elastic conical
membrane fixed at the outer edge and loaded by either uniform or hydrostatic
pressure. The governing equations were solved by the method of matched asymp-
totic expansions and by a finite-difference method. Agreement between the two
methods was excellent for the small values of the perturbation parameter.

INTRODUCTION

This paper is concerned with the moderately large axisymmetric deformation
of a shallow elastic conical membrane. The purpose of this work is to further
investigate the application of the method of matched asymptotic expansions (see
Van Dyke, reference 1) to the solution of membrane-shell problems involving
large deflections. The success of this method is based on the fact that for
small loads the linear membrane solution is a good approximation to the actual
solution everywhere except in the immediate vicinity of boundaries. In these
regions thin boundary layers exist where the variables undergo rapid changes to
accommodate themselves to the boundary conditions that cannot be satisfied by
the linear membrane solution. In the method of matched asymptotic expansions
separate perturbation expansions are found in the interior and boundary-layer
regions and matched in an appropriate way to insure that they join smoothly.

Bromberg and Stoker (ref. 2) initiated this type of analysis of membrane
shells when they found one term of both the interior and boundary-layer expan-
sions for a uniformly pressurized shallow spherical shell. The next two terms
in the interior and boundary-layer expansions were found by Smith, Peddieson,
and Chung (ref. 3) and used by them to investigate the accuracy of finite-
difference solutions of the same problem. One term of the interior and boundary-
layer expansions for deep membranes of arbitrary shape has been given by
Rossettos (ref. 4). This work generalizes the results given in the references
listed in reference 4.

In the present paper three terms of the interior and boundary-layer expan-
sions are found for the case of a shallow conical membrane loaded by either
uniform or hydrostatic pressure. It is found that complications arise which do
not appear in the solution of the corresponding sphere problem. The solution
method is modified somewhat to account for this. Numerical results are pre-
sented to illustrate some of the interesting features of the solutionm.
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GOVERNING EQUATIONS

Consider a shallow conical membrane (opening upward) with base radius a,
thickness h, and initial angle ¢ with the horizontal made of a linearly elastic
material with modulus of elasticity E and Poisson's ratio v. The equations gov-
erning moderately large axisymmetric deflections of such a structure can be
obtained from the work of Reissner (ref. 5). The resulting equations are (in
dimensionless form)

V' /e - /% 4+ (14e2B/2)(B/r) =
(1+e2B)y =
= = !

NP W/r, Ne ("

u=r7rp' - vy, W' =8B (1)
where ar is the radial coordinate, V,ay/¢s is a stress function (V, being a
characteristic vertical force resultant), VoV is the vertical force resultant,
VoNp/do is the radial stress resultant VoNe/¢o is the transverse stress resul—
tant, € is a load parameter, a¢oe u is the horizontal dlsplacement, adoe?w is
the vertical displacement, ¢oe2B is the rotation, and a prime denotes differen-
tiation with respect to r.

In the present paper a uniform pressure pp and a hydrostatic loading

Yo%oa(l-r) are considered. It can be shown by considering the vertical equi-
librium of the membrane centered on the vertex and having radius r that

V =1r/2 - jr?%/3 (2)

where j = 0 for the uniform pressure and j = 1 for the hydrostatic pressure.
The characteristic vertical force resultant is given by

D2 s i=0
2 . ‘
Y2 ¢o, =1 (3)
The load parameter € is defined to be
- O/_Jhd}o) (u)

In the present work it is desired to solve equations (1) subject to the
boundary conditions

u(1) =w(l) =0 (5)

Special attention will be given to situations where e << 1.
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STRAIGHTFORWARD SOLUTION

To begin the solution process a straightforward perturbation solution to
equations (1) is sought for e << 1. To do this it is convenient to rearrange
equations (la) and (1b) to yield

e2(y" + Y/ - W/r?) - (1 - (xV/¥)2)/(22) = O

B = (xV/Y - 1)/e? (6)
A straightforward perturbation solution for & << 1 has the form

v +ep o+ e+ .. (7)

s  's0 s1 s2
where the subscript s indicates the straightforward solution. Substituting
equation (7) into equation (6a), expanding for e << 1, setting the coefficient
of each power of € equal to zero in the usual way, and solving the resulting
algebraic equations yields
by v (r2/2 - 4r3/3) + €2(r?/2 - jr3/3)(3r/2
- 8ir?/3) + e*(r?/2 - 3r3/3)(750r2/8
- 3(79r3/2 - 320")) + . . . (8)

From equations (1) and (6b) it can then be shown that

N__ o (/2 - §v2/3) + €2(v/2 - j1r2/3)(3r/2

rs

1

8ir2/3) + e*(vr/2 - r?/3)(75r2/8

5(79r3/2 - 320™)) + . . .

N88 n (- 9p2) + e%(9r?/y - j(22r3/3 - uOP”/g))
+ e%(7503/4 - 5(915r"/8 - 175p°
+ 22up8/3)) + . . .

B, v -(3r/2 - 83r%/3) - €X(57r?/8
- 5(3r /2 - 22up'/9)) + . .

ug v (1= wW/2)r? - 3(1 - v/3)r? + eX(3(8 - V) 3/u
- 311 - V6 - 8(5 - Vr°/9))

b oeM75(n - VY16 - §(183(5 - VI /8

- 175(6 - Vr®/6 + 32(7 - VP7/3)) + .

577




W, -3(r2 - 1)/u + j8(r3 - 1)/9 - €2(19(r3 - 1)/8
- §(83(r" - 1)/8 - 22u(r* - 1)/u5)) + . . . (9)

where equation (5b) has been used to determine the constants of integration in
equation (9c). By comparison with the results given in Kraus (ref. 6) it can
be seen that the first term in each series expansion is the linear membrane
solution. It should also be noted that the first terms in equations (9d) and
(9e) are due to the second term in equatlon (8). Thus to obtain B and w_ to
0(e?) it is necessary to find w to 0(e*). The boundary condltlonsrepresgnted
by equatlon (5a) cannot be satiSfied by equation (9d). Thus a boundary-layer
expansion is needed in the vicinity of r = 1.

BOUNDARY-LAYER SOLUTION

There are several ways to carry out the boundary-layer analysis in this
problem. One is to work in terms of the original stress function Y. If this
is done the differential equation for the first boundary-layer approximation
turns out to be nonlinear. Bromberg and Stoker (ref. 2) discovered that a
linear equation could be obtained in the first approximation for a spherical
membrane by a method which is equivalent to working with a dependent variable
which is the difference between the actual and the linear stress functions.

This was tried in the present problem but matching difficulties were encountered.
These were due to the fact that equations (8) and (9) do not terminate with one
term for the cone as the corresponding straightforward expansions do for a
sphere. It was, therefore, decided to use the difference between the actual
stress function and the straightforward stress function as the dependent vari-
able. This guarantees that the outer expansion for this dependent variable will
be zero. Thus it is necessary to find only the inner expansion.

Substituting
b= U+ Uy o (10)

(where the subscript b denotes +the boundary-layer solution) into equation
(6), defining the boundary-layer variables F and & by the equations

ll)b = ¢F, r=1- e, (11)
expanding F as
FaoF o+ + 2 Coe 1
~Ey EFl £ F2 + . (12)
and carrying out the usual perturbation analysis yields
Can L
F, - $F, =0 (13)
and two other equations governing Fl and F2 where
e
= (6/(3 - 23))7* (1%)
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In equati?n (13) ( ) = d( )/ds. Define N p> Ngps By uy» and wy by the follow-
ing equations

N, = N + N

N =N + N 5 os b

T rs rb?
B = BS + Bb/€a U= Ut ug, WS Wt (15)
Now expand as follows
“ 2 + ...
Ab AbO + eAbl + € Abz (16)
where Ap is any one of the boundary-layer variables. Substituting equations

(10), (11), (12), (15), and (16) into equations (1), expanding for e << 1, and
equating the coefficients of like powers of ¢ to zero one obtains

= - - = - 82
Nepo T For Mapg For oo o
= - . = §2 >
we = Fps Wy é F & (17)
and two similar sets of equations relating A, and A _to F , F., and F_. A

. s . . D ‘s
similar procedure applied to equation (5a) eéds to B%undary condition

fo(o> =1-3-(1/2 - 3/3) (18)
and boundary conditions for fl(O) and ?2(0).

To illustrate the solution procedure the first approximation will now be
carried out in detail. The solution of equation (13) is easily seen to be

F. = c. exp(SE) + c, exp(-8E&) ‘ (19)

0 1 2

Since the outer expansion has been forced to vanish because of equation (10)
the matching process (see Van Dyke, reference 1) is equivalent in this case to
a statement that positive exponential terms must vanish. Thus

c, =0 (20)
Substituting equations (19) and (20) into equation (18) yields

-(L - 9§ - (/2 - 3/3))/s (21)

C
2

Thus

"

F -(1 - 3 -(1/2 - j/3)v)exp(-SE)/S (22)

0

Substituting equation (22) into equations (17) one obtains

-(1 - 3 -(1/2 - §/3)v)exp(~-SE)/S

Nrbo

N (L~ 3 - (1/2 - §/3)v)exp(-S¢)

gbo
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Bo = (1 - 93 - (1/2 - 3/3)v)S exp(-Sg)
U = -(1 ~ 3 - (1/2 - 3/3)v)exp(~Sg)
g T -(1 -3 - (1/2 - 3/3)v)(1 - exp(-S¢)) (23)

The results for higher approximations are found in a similar way but the calcu~
lations are quite lengthy. For the sake of brevity this work is omitted.

To find the complete solution the boundary-layer expansions must be added
to the corresponding straightforward expansions. The first approximations to
these expressions are

b, = r?/2 - Jr3/8 - e(1 - § - (1/2 - §/3)v)exp(-S(1 - r)/e)/S
po = T/2 - 3r2/3 - e(1 - 3 - (1/2 - §/3)v)exp(-S(1 - r)/e)/S
Noo = v - 32 + (1 - 3 - (1/2 ~ §/3)v)exp(-S(1 ~ v)/e)
By = (L -3 - (1/2 - 3/3)v)S exp(-S(1 - r)/e)/e
uy = (1 - v/2)r? - (1 - v/3)rd - (1 -

- (1/2 - j/3)v)exp(-S(1 - r)/e)
Woos 3(1 - v2)/4 - 8(1 - r3)/9 - (1L -3

- (172 = 3/3)v)(L - exp(-S(1 - r)/e)) (24)

In writing equations (2u4) the boundary-layer solution was treated as the funda-
mental expansion. All terms in the straightforward expansion with magnitude
equal to or greater than the first term in the boundary-layer expansion were
added to this term to form the first approximation. The same method was used
to obtain the second and third approximations.

RESULTS AND DISCUSSION

Numerical results were computed for the first, second, and third approxi-
mations to the variables ¥, Ny, Ng, B, u, and w. These calculations were made
for a variety of values of the load parameter ¢ and Poisson's ratio v. To
evaluate the accuracy of the perturbation method, selected cases were compared
with numerical solutions to equation (6a) obtained by the finite-difference
method discussed by Smith, Peddieson, and Chung (ref. 3). It was found that
the third approximation to the perturbation solution agreed with the finite-
difference results up to € = 0.1. It should be pointed out that for small
values of €, the numerical method is difficult to apply because a variable
step size must be used near the edge and the optimum arrangement of step sizes
can only be approached by trial and error. The explicit formulas obtained in
the present work are much easier to use for g << 1.
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To illustrate the behavior of the solution some of the computed results
are shown in figures 1 --4. For the sake of brevity, data are presented
for only the radial stress resultant Ny, the transverse stress resultant Ng,
and the vertical deflection w. The solid lines represent the three-term per-
turbation solution while the dashed lines represent the linear membrane solu-
tion. The linear membrane solution is shown only when it differs significantly
from the perturbation solution.

Figures 1 and 2 present results for uniform pressurization (j = 0).
Figure 1 shows that thin boundary layers exist for Ng and w for € = 0.01
while Ny does not exhibit boundary-layer behavior. As € increases the bound-
ary layers become wider for all variables. This is 1llustrated by figure 2.
Figures 3 and U contain results for hydrostatic loading (j = 1). The para-
metric trends illustrated by these results are identical to those discussed
above but the behavior of the solution variables is more complicated. These
results illustrate the utility of the perturbation method. Complicated func-
tions of this type can be represented numerically only if extreme care is used.

Results were also computed for several other values of v. It was found
that the qualitative behavior of the solution is not significantly influenced
by this parameter.

CONCLUSION

In this paper, the rotationally symmetric moderately large deformation of
a linearly elastic shallow conical membrane subjected to either uniform or
hydrostatic pressure was investigated. A single differential equation having
a stress function as dependent varigble was solved by the method of matched
asymptotic expansions. The accuracy of the solution was verified by compari-
son with a finite-difference numerical solution of the governing equation for
the stress function. Selected results were presented graphically to illustrate
interesting features of the solutions.
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A PLANE STRAIN ANALYSIS OF THE BLUNTED CRACK TIP USING
SMALL STRAIN DEFORMATION PLASTICITY THEORY*

J. J. McGowan and C. W. Smith
Virginia Polytechnic Institute and State University

SUMMARY

This paper presents a deformation plasticity analysis of the tip region
of a blunted crack in plane strain. The power hardening material is incompres-
sible both elastically and plastically, in order to simulate behavior of a
stress freezing material above critical temperature. The study represents a
full field, finite difference solution to the Mode I problem. Stress and dis-
placement fields surrounding the crack tip are presented. The results of this
study indicate that the maximum stress seen at the crack tip is indeed limited
and is determined by the tensile properties; however, the scale over which the
stresses act is dependent on the loading. Comparisons are good between the
forward crack tip displacement and micro-fractographic measurements of
"stretch'" zones observed in plane strain fracture toughness tests.

INTRODUCTION

In recent years Cherepanov (ref. 1), Rice (ref. 2,3), Hutchinson (ref. 4,
5), and Rice and Rosengren (ref. 6) have shown the asymptotic behavior of
stress and strain fields surrounding sharp crack tips in plane strain. Using
these studies as a guide, full field solutions with finite elements have been
obtained by Levy, Marcal, Ostergren and Rice (ref. 7) and Hilton and Hutchinson
(ref. 8). These two studies give accurate near and far field behavior due to
the inclusion of singular elements reflecting plasticity at the crack tip.
Other numerical solutions by Marcal and King (ref. 9), Mendelson (ref. 10),
Swedlow and coworkers (ref. 11,12) and Tuba (ref. 13) show qualitative features
of the near field, but may not yield accurate stress field definition due to
the large gradients there.

In order to have an accurate description of the near field surrounding
crack tips, and hence a good understanding of the mechanisms of failure,
Rice and Johnson (ref. 14) have pointed out that crack tip blunting must also
be included. Their analysis accounted in an approximate manner for the
blunting at the crack tip and for strain hardening in the plastic zone. As a
result they showed that the stresses near the crack tip are indeed finite and
that the maximum o stress occurred at some small distance from the deformed
crack tip. A finite deformation analysis by McGowan and Smith (ref. 15) of
blunted cracks in a linear (stress-strain) incompressible material shows the
same general behavior. The maximum oyy stress occurs in front of the blunted
crack tip and the magnitude is independent of the remote loading.

*This work was supported by the National Science Foundation Engineering
Mechanics Program under Grant No. GK-39922

585




The purpose of the present study is to gain a full field solution around
a blunted crack tip in a strain hardening incompressible material under Mode I
loading. This work will provide an accurate description of the stress and de-
formation fields immediately surrounding the blunted tip, and thereby gain
insight to fracture behavior. Deformation theory of plasticity with a Mises
yield condition is used., The resulting set of equations is solved for the
blunted crack tip in the deformed state under load by finite differences.
The linear theory of Inglis (ref. 16) gives the necessary asymptotic boundary
conditions.

An initial goal of the present study was to gain a more complete under-
standing of the near field behavior of stress freezing photoelastic materials
above critical temperature; however, this study should also give considerable
insight to the general behavior of engineering materials under Mode I loading.

SYMBOLS
c One-half crack length €, Initial yield strain
E Young's Modulus ep Effective plastic strain
K Stress intensity factor €p Effective total strain =
e + o0 /E
) e
n Strain hardening exponent o Deformed crack root radius
r,0 Cylindrical coordinates measured from Y Poisson's ratio
crack tip
T Secant modulus = oe/eT Gij Stress tensor
uy Displacement vector Oyy Hoop stress
U Strain energy density 9 Effective stress
X Distance in front of deformed crack 9, Tensile yield stress
tip
Y Distance perpendicular to deformed o Airy stress function
crack tip
€ Strain tensor o Constant in eq. (2)

ij
FORMULATION OF THE PROBLEM

Using small strain deformation theory of plasticity for an incompressible
(v= 1/2) material the governing equation for the field can be shown to be:

1

1
T @ 9200 7 2 1911 T 2% 119 * 2P @ )

11 T 2120

586




1

1 1
2@ 5 @ apn T 1) T @ 0 ) [ 5 - @ gyl (1)
1 -
A %1270
(The details of this analysis are given in ref. 17)
For this study a Ramberg-Osgood material will be used
E _ 1/n
o, er = oe/oo + ba[(oe/co) 1]
E _ (1-n)/n
or - = 1+ ba[(oelco) ‘ Oo/oe] (2)

where b = 0 if ¢ < o
e o]

b=11if ¢ > ¢ .
e — O

Thus the governing equation (1) will be solved subject to the constitutive
laws (eq. (2)).

The geometry of the blunted cracks in the deformed state under Mode I
loading will resemble small elliptical perforations as shown in figure 1.
The size of the deformed crack tip root radius will be determined through
integration of the strain displacement relationships

u, . t+tu, ., = 2¢e,..,
i, jsi ij

The affected strain hardening region will be divided into a small grid
utilizing elliptical coordinates and the governing set of equations will be
solved through the method of finite differences. At some distance from the
deformed crack tip the linear solution of Inglis (ref. 16) will apply. The
stress at the outer boundary of the inner strain hardening region will be then
matched to the Inglis solution. The outer boundary will be enlarged until
there is no change in the inner stress field. (A detailed description of the
solution procedure is given in ref. 18.)

PRESENTATION OF RESULTS

The stress and displacement fields in the field surrounding a deformed
crack tip in a strain hardening material which is incompressible in both the
elastic and plastic regions are examined. Strain hardening exponents of 0.2
through 0.01 are presented. The range of initial yield strain values is from
0.01 through 0.0001. The value of o in the effective stress-effective strain
relationship, equation (2), is taken to be 1.0 in this study. (The authors
have found that small changes in 0 and Vv do not influence the solution signifi-
cantly.) The "linear" results reported here are those of Inglis (ref. 16) for
a deformed crack tip in a linear material. The "singular" results are those
corresponding to a crack which has no root radius in a linear material.

The plastic zone shape for the smallest ellipse investigated (p = 0.0018
(K/oo)2 ) is shown in figure 2. Note that with decreasing hardening (n - 0)
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the plastic zone grows in maximum extent and leans progressively in the direc-
tion of crack propagation. For comparison, the singular plastic zone from
McClintock and Irwin (ref. 19) and that of Levy et al (ref. 7) for a non-
hardening (n = 0) material are also shown. As shown by figure 2, the plastic
zone shape predicted by McClintock and Irwin (ref. 19) is approached by the
present study as n + «, The difference between the plastic zone shape pre-
dicted by Levy et al (ref. 7) and the present study for n = 0.0l is primarily
due to the inclusion of blunting effects and use of v of 0.5 in the latter;
the difference should be negligible as Eo > 0.

The effective stress o is shown versus the distance ahead of the de-
formed crack tip in figure 3% This figure shows that the effective stress
varies as (rn/ntl)=1l ip the plastic zone ahead of the tip. (The behavior for
other values of 6 is similar). It can be shown that the strain energy has the

form: 2 (14n) /n

2EU % 2 %

B + T a b — -1 for a power hardening material

o o} o

o

Therefore, the strain energy varies approximately as 1/r in the plastic zone.
This was a key assumption in the analysis of Rice and Rosengren (ref. 6) and
Hutchinson (ref. 4).

The ¢ stress in front of the crack tip is shown for various values of
yield strain for n = 0.0l in figure 4. As shown in this figure, this stress
is substantially reduced near the crack tip because of blunting and strain
hardening, with the maximum value developed at some distance forward of the
crack tip. (The oy stress distributions for other values of n is quite
analogous.) The anaXysis of Rice and Johnson (ref. 14) gives the same quali-
tative behavior; the correlation is believed to be quite reasonable in view
of the several approximations involved. For a non-hardening material Rice
(ref. 2) has shown that the maximum o stress is 2.97 Og- This stress, as
predicted by Levy et al (ref. 7), approaches this limit at the crack tip as
shown in figure 4. The oy, stress distribution of the present study in this
figure reflects the presence of blunting and should coincide with the work of
Levy et al (ref. 7) as €, 0.

Figure 5 shows the variation of maximum ¢ stress with initial yield
strain for varying hardening. As shown in the figure, blunting alone (the
"linear" curve) forces the peak o stress to be finite and the inclusion of
finite deformations (ref. 15) reduces the magnitude somewhat. However, the
effects of blunting and plasticity taken together are significant: the peak
oyy Stress is reduced by a factor of 10 from that with blunting alone. From
figure 5, one observes the peak oyy stress to be 300 to 700 depending upon n
and OO/E. The peak ¢ stress increases with n and decreases with OO/E. (The
large value of peak o, stress compared to the uniaxial yield stress, Oys is
believed due to the presence of triaxiality in the crack tip regiom.)

The crack tip displacement in the direction of propagation (which is also
the deformed crack root radius, p) is shown in figure 6 for varying initial
yield strain and hardening exponent. The present study predicts that the for-
ward crack tip displacement increases with ¢,/E and decreases with n. For
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comparison ome-half the crack tip opening displacement calculated by Levy (ref.
7) is shown. The forward crack tip displacement as predicted by the present
study and the work of Levy et al (ref. 7) show parallel behavior, although they
are separated by some distance. This disagreement is believed due to the shape
of the crack tip being elliptical in the present study instead of cylindrical.

Included also on figure 6 is the width of the "tramsition" or '"stretch"
zone which exists on the fracture surface between the cracked and the overload
regions in fatigue. As Broek (ref. 20) has discussed, the depth of this tran-
sition zone is the crack tip opening displacement, and, therefore the width is
the tip forward displacement.

Examination of the figure shows the correlation between the forward tip
displacement and failure. The measurements of the stretch zone fall close to
n = 0.2. For the steels and aluminums shown values of n around 0.05 have been
reported in references 20, 21 and 22. However, it is known that for this class
of materials the value of n varies with plastic strain (ref. 23). For large
plastic strain (e, > 10%), the strain hardening expomnent is close to 0.2 as
shown by Jones ang Brown (ref. 24) for 4340 steel. The strains in the tip
region are clearly greater than 107 so that the agreement between the measure-
ments and the analysis appears quite reasonable. The scatter band shown on
the figure is an indication of the span of actual measurements (authors typi-
cally report a 40% wvariation).

DISCUSSION

Previously McGowan and Smith (ref. 15) performed a finite deformation
analysis of the region surrounding deformed crack tips for a linear (stress-
strain) material. The results of the finite deformation work showed that the
maximum Oyy stress occurred in front of the deformed crack tip. It was deter-
mined that the stress distribution around the crack tip was "similar", in the
sense that one stress distribution could be used to describe the response of
the material under load. The size of the affected zone would depend upon
the load and crack length through K. The self-similarity of the stress field
was a direct result of the blunting process, and would be expected to remain
as long as the affected zone stayed small with respect to the crack length,
thickness, or any other in-plane dimension.

The behavior is quite similar for a power hardening material. The stress
field is self-similar with the size of the affected zone varying with K. The
maximum g stress will only then be a function of the material properties
E, n, and o,. The stretching of the similar stress distribution will depend
upon K as well as the other material properties. One may conjecture that
failure would depend upon the growth in size of a critical dimension, such as
plastic zone size, which increases with K.

Wells (ref. 25) and others have used the crack opening displacement as a
fracture criterion. Broek (ref. 20) has used this concept to correlate the
depth of transition zones in aluminum with fracture toughness. The present
study shows good correlation of fracture toughness and transition zone width.
Krafft (ref. 26), Hahn and Rosenfield (ref. 27) and Rice and Johnson (ref. 14)

589




have all shown good correlation of plane strain fracture toughness with some
minute particle size or process zone size for specific cases.

SUMMARY AND RECOMMENDATIONS

Following the pioneering studies of Hutchinson (ref. 4), Rice and Rosen-—
gren (ref. 6), Levy et al (ref. 7) and Hilton and Hutchinson (ref. 8), the
authors have obtained a full field deformation plasticity finite difference
solution to the Mode I plane strain problem including the effects of blunting.
The material was incompressible in both the elastic and plastic regions, and
followed a power hardening rule. Stress and displacement fields surrounding
the deformed crack tip are presented, and are found to compare favorably both
with the analysis of other investigators as well as experimental results. Be-
cause of the improved accuracy expected from a full field solution, it would
be appropriate to incorporate such a solution into theories concerning void
coalescence and final instability. Efforts are currently being devoted to
such an approach.
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GAUSSIAN IDEAL IMPULSIVE LOADING OF RIGID VISCOPLASTIC PLATES

Robert J. Hayduk
NASA Langley Research Center

ABSTRACT

The response of a thin, rigid viscoplastic plate subjected to a spatially
axisymmetric Gaussian ideal impulse loading was studied analytically. The
Gaussian ideal impulse distribution instantaneously imparts a Gaussian initial
velocity distribution to the plate, except at the fixed boundary. The plate
deforms with monotonically increasing deflections until the initial dynamic
energy is completely dissipated in plastic work. The simply supported plate of
uniform thickness obeys the von Mises yield criterion and a generalized consti-
tutive equation for rigid, viscoplastic materials. For the small deflection
bending response of the plate, neglecting the transverse shear stress in the
yield condition and rotary inertia in the equations of dynamic equilibrium, the
governing system of equations is essentially nonlinear. A proportional loading
technique, known to give excellent approximations of the exact solution for the
uniform load case, was used to linearize the problem and obtain analytical
solutions. in the form of eigenvalue expansions. The linearized governing equa-
tion required the knowledge of the collapse load of the corresponding static
problem.

The effects of load concentration and an order of magnitude change in the
viscosity of the plate material were examined while holding the total impulse
constant. In general, as the load became more concentrated, the peak central
velocity increased and the time for plate motion to cease increased. For the
less viscous plate, these increases of velocity and time were more pronounced.
The final plate profile became more conical as the load concentration increased,
but did not approach the purely conical shape predicted for the point impulse by
the rigid, perfectly plastic analysis with the Tresca yield criteria. Profiles
of the less viscous plate were influenced more by the load concentration.

SYMBOLS
Ai series coefficient, equation (A6)
a Gaussian distribution parameter
B = K%El pPlate geometry and material constant
El’ 62 constants defined by equation (A5)
/3 p! B
F' = v nondimensional collapse load amplitude
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yield function
plate half-thickness

impulse per unit area amplitude at the plate center

impulse parameter, sec

Bessel function of the first kind of real and imaginary
arguments, respectively

second invariant of the deviatoric stress tensor

radial and circumferential curvature rates

yield stress in simple shear

radial and circumferential bending-moment resultants

radial and circumferential bending-moment resultants at
initial yield

yield moment of the plate

nondimensional radial bending-moment resultant

nondimensional circumferential bending-moment resultant

pressure amplitude at the plate center at collapse

nondimensional pressure amplitude at the plate center at
collapse

shear stress resultant

nondimensional shear stress resultant

plate radius

radial coordinate

deviator stress tensor




u(p,t)

U(p)

®(F)

¢

$(r_,8)
Y(A50,8)

deviator stress tensor at initial yield
time

time for motion to cease

dynamic component of velocity

steady component of velocity

initial velocity

nondimensional plate velocity
transverse deflection of the plate

transverse coordinate

plate geometry and material constant, sec

nondimensional Gaussian shape parameter
material constants

harmonic and biharmonic operators in cylindrical coordinates
final center deflection

strain rate tensor

eigenvalues determined from equation (A7)
mass density per unit area of the plate
nondimensional radial coordinate

stress tensor

yield stress in simple tension

function defined by equation (3)
circumferential coordinate

function defined by equation (Al3)

function defined by equation (Al2)
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INTRODUCTION

This paper presents the results of an analysis of the small-deflection
bending response of a simply supported circular plate of rigid, viscoplastic
material subjected to a spatially axisymmetric Gaussian ideal impulse. The
effects of load concentration and an order of magnitude change in the viscosity
of the plate material are examined while holding the total impulse constant.
Approximate expressions are developed for the time at which plate motion
ceases, the final shape of the plate, and the final central displacement.

Although there have been a number of papers (refs. 1, 2, 3) which permit
a time variation of the load, there have been few papers which consider a
radial variation other than linear (refs. 3, 4). The only general spatial
distribution of load which has received significant analytical attention is the
Gaussian distribution. By varying a single parameter, this general distribu-
tion can span the extremes from the point load to the uniformly distributed
load. This versatility was recognized by Sneddon (ref. 5) who approximated
the dynamic loading of a projectile on a thin, infinite elastic plate by a
Gaussian distribution of pressure. Madden (ref. 6), in his study of shielding
of space vehicle structures against meteoroid penetration, related the
meteoroid-shield debris loading of the main vehicle wall to a Gaussian initial
velocity distribution. The first study of this loading on a plastic plate was
by Thomson (ref. 7). He obtained the solution of a rigid, perfectly plastic
plate of material obeying the Tresca yield condition subjected to an initial
impulse of Gaussian distribution. Weidman (ref. 2), in/considering the
response of simply supported circular plastic plates to distributed time~
varying loadings, presented an example case of a radial Gaussian distribution
of pressure with an exponential decay. The plate material was also rigid,
perfectly plastic obeying the Tresca yield conditions.

A generalized constitutive equation for rigid, viscoplastic materials is
presented in the next section. Material elasticity is neglected in order to
simplify the analysis, as is frequently done in theoretical investigations of
dynamic plastic response of structures. Rigid-plastic analyses are generally
believed to be valid when the dynamic energy is considerably larger than the
maximum energy which could be absorbed in a wholly elastic manner and the
duration of loading is short compared with the fundamental period of vibration.

LINEARIZATION OF THE GENERALIZED CONSTITUTIVE EQUATIONS

FOR RIGID, VISCOPLASTIC MATERIALS

Perzyna (ref. 8) developed a generalized constitutive equation for rate
sensitive plastic materials by incorporating a general function in the
relationship to take the place of the yield function as used by previous
researchers (Hohenemser and Prager, ref. 9; and Prager, ref. 10). Utilizing

e e . , . 1
the definition of the second invariant of the stress deviator, J! = = S

..S..,
the yield function is expressed as zZ 24343
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F = -1 oY)

where Sj; 1s the stress deviator tensor and k 1is the yield stress. The
generalized constitutive equation proposed by Perzyna is

JF

. _ .0
Epg = VOB 35 2)
1]
where éij is the strain rate tensor,
®(F) =0 4if F <0
(3)

®(F) #0 if F >0
and YO denotes a physical constant of the material.

Perzyna (ref. 11) has shown that the generalized constitutive equation
for viscoplastic materials reduces to the constitutive equations of an incom~
pressible, perfectly plastic material first considered by von Mises and to the
flow law of perfect plasticity theory. As in the theory of perfectly plastic
solids, convexity of the subsequent dynamic loading surfaces and orthogonality
of the inelastic strain-rate vector to the yield surface follow from Drucker's
postulates defining a stable, inelastic material with inclusion of time-
dependent terms (Perzyna, ref. 8).

A method of linearizing boundary-value problems in the theory of visco-
plastic solids is described by Wierzbicki in reference 12. 1In this method, as
shown graphically in figure 1, the concept of proportional loading is used to
relate the state of stress §i‘ on the initial yield surface F = 0 to sub-
sequent states of stress, nameiy, proportional loading requires the direction
cosine tensor of the state of stress in deviatoric space to be independent of
time:

S.. S, .

1y 17 (4)
\1/2 k

Iy

This is a reasonable approximation for axisymmetrically loaded simply supported
circular plates because the plate center and boundary are automatically pro-
portionally loaded, that is, the bending moments must always be equal at the
plate center and the circumferential bending moment must always be zero at the
plate boundary.

Utilizing equation (4), the generalized constitutive equation (2)
becomes
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€4 =10 Al q) &, (5)

where the viscosity comstant 7Y = Y°/2k. For this analysis, the linear form
®(F) = F (6)

is chosen. This simplified constitutive equation still is nonlinear in stresset
However, in the solution of dynamical plate and rotationally symmetric shell
problems, the constitutive equation (5) with the linear function &(F) =F
produces full linearization of the governing equations.

For the problem of a uniformly loaded, simply supported circular plate
with @(F) = F, Wierzbicki (ref. 12) has shown that the approximate solution
obtained using the proportional loading hypothesis agrees very well with a
numerical finite-difference solution of the exact equations. The solution of
the linearized problem also agrees well with experimental data on impulsively
loaded plates by Florence (ref. 13).

For the linear function equation (5) becomes
e =XL(s . -8.) )

where equation (7) is really a flow relation for a given structure rather
than a constitutive equation describing a given material (ref. 14).

GOVERNING EQUATIONS, BOUNDARY AND INITIAL CONDITIONS

A Gaussian ideal impulse is suddenly applied to the entire surface of a
rigid, viscoplastic plate of radius R and thickness 2h resulting in an
initial velocity distribution described by

-azrz
V(r, 0) = H e (8)

H

where I dis the impulse per unit area at the center of the plate and U is
the mass density per unit area of the plate middle surface. The boundary of
the plate at r = R 1is simply supported. The geometry of the plate and
initial velocity are shown in figure 2.

The parameter a in the distribution function is a shape parameter which
controls the distribution of the impulse. For a = 0 equation (8) describes
a uniform impulse; and as a > ®, I > ® equation (8) describes a point
impulse at the plate center.
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The internal forces and moments acting on a typical plate element are
shown in figure 3. 1If rotary inertia is neglected, but transverse inertia
taken into account, the equations of motion are

2
d _ dw
ar (rQ) = Hr 2
ot
(9)
9
or (er2 " M¢ =rQ
Utilizing the Love-Kirchoff hypotheses, the curvature~rate-moment rela-
tions, derived from the linearized constitutive equation, equation (7), are
k=2 [(eM -M,) - (2 -H)]
r M r [0 r ¢
(10)
. _B_ _ ow @
Ry = (2 - 4,) - (o - )]
where B = /3 Y/2h. ﬁr and M are moments satisfying for any r the
equation of the initial yield surface
M2 - MM, +MC = M (11)
r r ¢ ¢ o

My = Ooh2 is the yield moment of the plate material and 0, is the yield

stress in simple tension.

For small deflections of the plate the curvature rates Kr and R¢ are
related to the deflection rate w by

. 5%w . 1 9w
K = - 22X, = _ + 9%
r 8r2 ’ K¢ r or (12)

Equations (9), (10), and (12) form a linear parabolic system of partial
differential equations with six unknown functions — My, M¢$, _Q, w, K., and
K¢ — plus the unknown static moment distribution M, and M¢.

By eliminating all unknowns except w, the system of governing equations
can be reduced to the single, fourth-order equation

M

o 4 . ow _ 190 (3 , = =
3—B— Vi w + H 5—5 = r or [a (er) - M(b] (13)
2 2
where Vh=[3__+:l_a__l:§_+l.8_.
8r2 r or ar2 r Jdr
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The right-hand side of equation (1l3) represents the internal force distribu-
tion at the initiation of collapse in the static case.

Let pé denote the static load-carrying capacity of the plate, then the
2
] -aTr

right-hand side of equation (13) can be replaced by “Pg © and the
governing equation becomes
2M 2.2
o 4 ow _ -a’r
I8 V' w+ U Y p e (14)

This method of solution, proposed by Wierzbicki (ref. 12), has the impor-
tant property of replacing the unknown static moment distribution ﬁr and M¢,
whose explicit formulas are not known for the von Mises yield condition, by
the static load-carrying capacity Po Thus, the need for explicit formulas
has been reduced to finding the value of a constant, po, corresponding to a
particular value of the shape parameter, a. The determination of the load-
carrying capacity, pé, of a circular plate under a Gaussian distribution of
pressure is presented in reference 15.

Define the dimensionless quantities

=

M
T R
m= gy e n.ﬁ Mg ? qQ = ﬁg
o) o o]
z 2,2
pP=%g » B=2aR (15)
t pe
v = 1 ow F = 3 pOR
= - . =
BR2 at N MO
2_ 9%, 13
and let V == 5-55- Then the final form of the governing equation,
80
equation (14), is
4 3,9 _ _ v ~Bp
Viv+ oo, 2 Y3 F (16)
4
where 0o = UBR /Mo'
The boundary conditions of the simply supported plate are
m=n, g=0 a p=2¢0
17)

602




Using equations (10), (12), and (9), equations (17), in terms of
rate of deflection become

2 3 2
lim <§_‘é’__3-_.gl>=o, 1lim <J+£%—L§%%>— 0;
p+0 ‘30 P p~>0 \ap 3" p
_ (18)
82v oV
2 =+ =0; v(1,t) = 0
ap P
p=1

For the Gaussian ideal impulsive loading the plate is initially flat and the
initial velocity has a Gaussian distribution

-Bp?

w(p, 0) = 05 v(p, 0) = e (19)

IR

M
o}

where 1I' =

RESULTS AND DISCUSSION

The solution to the governing equation, equation (16), with associated
boundary and initial conditions, equations (18) and (19) are presented in
the Appendix. The effects of load distribution and plate viscosity on plate
response are examined in this section while holding the total impulse constant.

The impulse amplitude, I' = IRZ/MO, sec, at the plate center is related
to the total impulse, 1T, and distribution parameter, B, by the relation

T
I B
I' = (20)
TrMo (l - e~8)

T
. . . I -
For comparison purposes the total impulse is held constant at ™o 1 x 10
o
sec. The impulse becomes more concentrated at the center of the plate as 8
is increased and the amplitude grows almost linearly as f becomes large.

For § = 0, the impulse has a uniform distribution.

3

The graphical results were obtained by programing the solution (equations
(A14) and (Al5)) and summing the series term-by-term. The rapidly convergent
series with l/Ag and l/)xn factors did not present any computational diffi-
culties; however, the last series in the velocity expression equation (Al4)
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has a 1/A, factor and prohibited the calculation of velocity-time histories
for small B and t. For t =0 the series is slowly convergent.

A representative plot of the plate central velocity is shown in figure 4
for B = 10 and viscosity parameter o = 1 x 10~2 sec. The initial central
velocity is seen to rapidly decline during the first 0.025 msec after which
the velocity more slowly tends to zero.

The plate is seen to deform monotonically with increasing deflection until
the initial dynamic energy is completely dissipated in plastic work and the
plate comes to rest. The deformed profiles of the plate at rest are shown in
figure 5 for two values of o (1 x 10‘2, 1x 10'3) and various values of B.
The profile becomes more conical as the impulse becomes more concentrated and
the profiles of the less viscous plate (0 = 1 x 10~2 sec) exhibit a wider
variation, thus are influenced more by the shape parameter £ than are those
for the o = 1 x 1073 sec case.

Approximations

An approximation to the deflection of the plate is obtained from equation
(A15) by retaining only the first terms of series and using the approximation

o 2.n
= = 2.1 -Bp2 , 1 2 "B
CpH Gy +og e tEre) Z EY
n=1
~ _ 168 1
= - 3 )\5 LPO\]_’Q,B)
1

The result is

' 2 © n 2.
L w(e,t) = - /3 E [% +T ol + LB (%-+ 0% y (=1) (Bp™) ]
n=1

2 SR ST (z0) n!
27
—.——-t '
1-e 3o BT (21)
A
21

An approximate expression for the time for motion to cease can be obtained by
setting the derivative of the approximate displacement expression to zero,
ow

that is; £¢| =0, is
t
£ 4
3 Ay T
tf=-—oi£2n 1 +— (22)
217 2V/3 Fla
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Equation (22) is plotted in rigure 6 for 0 < B < 100 and several values of

o. Equation (22) is an implicit function of B since I' and F' vary with
B. The effect of B diminishes after an initial rapid rise of tg with
increasing B. The symboled points represent computed times using the complete
equation for the velocity, equation (Al4). Equation (22) is a very good
approximation for the case o =1 x 1073 sec. However, except for small values
of B, the approximation is poor for the o =1 x 10~2 sec case.

For o > «© equation (22) limits to

I
£ 4F'

(23)

*CJI|H

1
o
and represents the rigid, perfectly plastic case (Y + ®) with the von Mises
vield condition. Equation (23) has the same form as Wang's (ref. 16) result
for the uniform ideal impulse problem using the Tresca yield condition for a
rigid perfectly plastic material. However, equation (23) gives slightly
smaller values of ty since 55 = 6.51 for the von Mises yield condition
rather than 6 1in the case of the Tresca yield condition.

The curve labeled Tresca, r.p.p. was obtained from the results of refer-
ence 7 where a simply supported circular plate of rigid, perfectly plastic
material obeying the Tresca yield condition and associated flow rule was
analyzed for a general Gaussian ideal impulse loading. For small B the two
curves differ only slightly, but as £ grows larger and the impulse becomes
more concentrated, the two analyses predict drastically different times for the
plate motion to cease. The Tresca yield condition predcits very large times
for plate motion to cease, whereas the von Mises yield condition predicts more
realistic times for concentrated loads.

The substitution of equation (22) for tg dinto equation (21) provides
an approximate expression for the final plate displacements:

1 AR [= a2 2.1 8", 1 (-1)" (8o
BR2 w(ip,t) = - e [él + C2p + 8 © + ( + p 2: (2n) o ‘]

n=1
4
, AT
%?—--30‘14 fn 1+ ——2—o (24)
2)] 2/3 Fla

and for the final center displacement &(0,tf) = W(O,tf):
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Equation (25) is plotted as a function of £ for the two values of o in
figure 7. The approximations are in excellent agreement with the points
computed from the exact equations for both o = 1 x 1073 sec and 1 x 1072 sec,
even though the tg-approximations for the larger o were poor for large B

as shown in figure 6. The nondimensional central displacements are shown
smaller for the o = 1 x 10~2 sec case when, in reality the real displacements
are larger than for the o = 1 x 10~3 sec case. This is caused by o being

in the denominator of the expression for the nondimensional central displacement.

Profiles obtained from the approximation, equation (24), were compared
with profiles obtained from the exact equation. For o =1 x 1073 sec, the
differences between the approximate and exact profiles were negligibly small
for the entire range of £ considered, 1073 to 10,000. However, for the less
viscous plates, o = 1 x 102 sec, the differences were not negligible and the
approximation, equation (23), should therefore be restricted accordingly.

CONCLUDING REMARKS

A thin, simply supported rigid, viscoplastic plate subjected to a Gaussian
ideal impulse has been analyzed within the realm of small deflection bending
theory. The plate material obeys the von Mises yield criteria and constitutive
equations due to Perzyna (ref. 11). These considerations lead, essentially, to
nonlinear equations governing the dynamic response of the thin plate. A pro-
portional loading hypothesis, proposed by Wierzbicki (ref. 12) and shown to be
an excellent approximation of the exact solution for the uniform load case,
was used to linearize the problem and obtain analytical solutions in the form
of eigenvalue expansions. The linearized governing equation on the velocity
of the plate required the knowledge of the collapse load of the corresponding
static problem, that is, the collapse load for the specific load distribution
parameter, f.

The effects of impulse concentration and an order of magnitude change in
the viscosity of the plate material were examined while holding the total
impulse constant. In general, as the impulse became more concentrated, the
peak central velocity increased and the time for plate motion to cease
increased. For the less viscous plate material, these increases of velocity
and time, tg, for plate motion to cease are more pronounced. The final plate
profile became more conical as the load concentration increased, but did not
approach the purely conical shape predicted by the rigid, perfectly plastic
analysis with the Tresca yield condition for a point impulse. As the viscos-
ity of the plate decreases, the shape parameter has more effect on the final
deformed plate profiles.
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Approximate expressions were developed for the time at which plate motion
ceases, tf, the final shape of the plate, and the final central displacement.
Comparisons with the series solution indicated that the approximations were
excellent for the o = 1 x 10™3 sec case. The approximation for the final
central deflection was good for the entire range of shape parameter @B, the
other approximations were limited in usefulness.
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APPENDIX

SOLUTION OF EQUATION (16) BY EIGENVALUE EXPANSION*

Since the right-hand side of equation (16) is not a function of time, it
can be solved by means of an eigenvalue expansion method. Substitution of

v(p,t) = u(p,t) + U(p) (AD)

into equation (16) results in

2
V4u(p,t) +-% o éEL%iEl + VAU(Q) = - 2/3 F' e_Bp
which separates into
4 3  du _

Vu+20L3t—O (A2)
and

A —Boz

Viu=-2/3F"e (A3)

Equation (A3) is the same as equation (16) except for the absence of the
inertia term. Thus, U(p) is an equilibrium solution of equation (16) with the
same boundary conditions, equatiomns (17).

The solution to equation (A3) satisfying the boundary conditions, equa-
tions (18), is

2 i m 2,\m
ule) ='§§ F'{:al *50° + 55 T G+ X iféﬁﬁjS%LJL':} (44)
m=1 :
where 0 m_m
= 1 7 _2 -B_1 (D B
1% " 6738 ° T8 mzl (2m) m! (A5)

*,
For more details, the reader can consult "Gaussian Impulsive Loading of

Rigid Viscoplastic Plates," by R. J. Hayduk, Ph. D. Thesis, Virginia Polytech-
nic Institute and State University, Blacksburg, Virginia, 1972.
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and

_ 1,7 1 -B_ y (17"
G~ e8T6 B¢ ~ Zl (2m) m!

A general solution due to Wierzbicki (ref. 12) satisfying equation (A2)
and all prescribed boundary conditions can be written in the form

0 (/30
up,e) = 1 Ap [T 0DI 0p0) = 3 0T, ()] e (A6)

where J, (x) and I, (x) denote the Bessel functions of the first kind of real
and imaglnary arguments The solution (A6) identically satisfies boundary con-
ditions (18 a, b, and d). The eigenvalues, ),, are roots of the following
transcendental equation stemming from the boundary condition (18c) of zero
bending moment at the plate edge

IO(An)Jl(An) + Il()\n)Jo()\n) - hxnlo(xn)JO(An) =0 (A7)

The only remaining unknowns in the solution are the series coefficients
A%. These coefficients are evaluated from the initial condition (19), that
is,
2

v(p,0) = u(p,0) + U(p) = éi.e‘sp

Thus,
2

a(p,0) = - U(p) + - &P (48)

and after substituting equation (A6) for u(p,0) there results
o , 2
T Al (LI () =3 0T (] = - () +im P (A9)
L n o'n" o' n o n” o ' n o

The coefficients AL can be determined from (A9) by virtue of the orthogonal-
ity of the system [I5(Ap)Jo(App) - J o(Ap)Io(App) ] on the interval [0,1] where
p 1is used as a weighting function. Therefore, coefficients AI can be
determined as

1 L2
L Ly @U - o =PI 0T ) - 3 0T 0 )] do

A =- T ; (A10)

[o PIT DI () = I QDT (A p)]" do

where U(p) is defined by equation (A4). The resulting coefficients are
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AL [I,ODI (O p) =3 0T O )] = [

>WH

]wan,p,s) (Al1)

ke

n

where the functions Y(A,,p,b) are defined by the relation

168

55 VOB = 00LB IO 0 e) = 3 0T 0 )] (412)
n
with
1 = 1 = 1 4
x ClIo()\n)Jl()‘n) - )\—clJo( n) l( n) * CZIO(An) [X_ Jl()\n) -—3.Jl()‘n) * 2 Jo“n%
n n n An A
IO =100 -Z 10+ 10 L 3y (¢ e
T 2% | X 1'"'n" T .2 o''n 3ln)+2BIo(n) xe JO(AX)dX
n A A 0
n n
1 2 1 g m 2\m
- ﬁJO(An)J‘O re~B¥ I (A x)dax + I (A )fo x (.é.+ ) ; {-am)nﬁlj‘ t\Jo(xnx)dx
n=1
1 m 2\m
(-1)
9(x ,B) = — \ (A13)
IO(An)J (An){zxn[l (X )Jl(An) - Il(Xn)J (A7 - BIO(A )Jo(kn)}

When equations (A4) and (A6) are summed and equation (All) is used, the
complete solution becomes

- - —R0° X (1 \BrpA2\D
R R =
n=1 )
= Zm L ~(22/30)t L 2 11 & 1 224300t (a1s
= V(X ,p,B)e " +E= 30 = y(r_,p,B n (A14)
o= DR S 2 %, Ve

The displacement of the plate is determined by integrating (Al4) with
respect to time. Taking the initial condition of zero displacement into
account, the displacement becomes
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—_— ﬁ ' ~ = 2 1 -
BR2 W(p t) )48 F t[cl + C2p + ..2? e Bp (_+ 0 )Z (_%gng o 2 ]
n=1
LpiZe s o1 (22"
* @F 5 ngl e W(A_,0,B)(1 - e (22n /30,
LD DRSO\ ,0,8)(1 - e'(2)\zl;/3a)t) (A15)
n=1 A5 n

Equations (Al4) and (Al5) represent the complete solution for the velocity
and displacement of the plate. In the limit as B - 0, the Gaussian ideal
impulse becomes the uniform ideal impulse and this solution reduces to the
solution presented by Wierzbicki (ref. 12).
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Figure 3.- Element of the circular
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Figure 4.- Representative time
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RECENT ADVANCES IN SHELL THEORY

James G. Simmonds
Department of Applied Mathematics & Computer Science

University'of Virginia

INTRODUCTION

The results to be reviewed are divided into two categories: those that re-
late two-dimensional shell theory to three~dimensional elasticity theory and
those concerned with shell theory per se. In the second category I further dis-
tinquish between results for general elastic systems that carry over, by spe-
cialization or analogy, to shells and results that are unique to shell theory
itself., Because of the limitations of space and my interests, I do not men-
tion multilayered or sandwich shells, A good discussion of these with an
ample 1ist of references may be found in Librescu's book [1]. Also, in view of
the excellent review articles by Stein [2] and Hutchinson and Koiter [3], I
have not attempted to review the enormous literature on shell buckling.

TWO APPROACHES TO SHELL THEORY

Most texts derive shell theory by a mixture of two-and three-dimensional
considerations. However, a number of recent papers have adopted one of the
following two extreme approaches:

A, A shell is idealized as a material surface in three-dimensional Eu-
clidean space capable of transmitting forces and moments. The physical laws
for this two-dimensional continuum are postulated in analogy with those for a
three-dimensional one. Stress-strain laws and even failure criteria are for-
mulated in terms of two-dimensional varisbles and may be deduced directly from
experiments on the shell material. The papers by Sanders [4], Ericksen and
Truesdell (5], Serbin [6], Budiansky [7], Simmonds and Danielson [8], and
Reissner [9], to mention but a few, as well as much of the monumental treatise
by Naghdi [10] are written in this spirit.

B. DNo matter how thin, a shell must be regarded as a three-dimensional con-
tinuum. However, the governing equations can be enormously simplified by con-
sidering various formal asymptotic expansions of the unknowns in terms of ap-
propiate "thinness" parameters. In the interior of the shell (i.e. away from
edges, concentrated loads or geometric discontinuities of one sort or another)
the leading terms of the expansions satisfy various sets of two-dimensional
equations that we call, collectively, the shell equations. Among those who
have contributed recently to this second approach are Green [11], Johnson and
Reissner [12], Cicala [13], Van der Heijden [1L4], and especially Goldenveiser
(see the references cited in [15].)
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The virtue of the first approach is also its shortcoming: there is no way
to estimate intrinsically the errors made by neglecting three-dimensional ef-
fects., Or, from another viewpoint, there is no systematic way to construct a
refined shell theory.

A drawback of the second approcach, aside from its tediousness, is that it
requires a knowledge at the edges of the shell of the distribution in the
thickness direction of the applied stresses or displacements. As Koiter has
emphasized [16], we never know these distributions precisely, except at a free
edge. Ancther drawback of the second approach is that, because the thickness
of the shell is always incorporated in the expansion parameters, one set of
uniformly valid interior (i.e. shell) equations does not emerge. Rather there
is one set of equations for a "membrane" state, another for an "inextensional
bending' state, another for a "simple edge effect", another for a "degenerate
edge effect'", and,if one is dealing, for example, with an infinite cylindrical
shell subject to self-equilibrating edge loads, still another set of equations
is needed to recover the "semi-membrane'" theory of Vlasov [17, p. 254].

THE ASYMPTOTIC APPROACH

The goal here is to provide a systematic method of refining the analysis
of thin-walled bodies. One important consequence of the asymptotic approach
is the verification and refinement of the classical Kirchhoff boundary condi-
tions. Another useful result is that it gives a method for computing the do-
minant stresses in the immediate vicinity of an edge without the need of
solving a full three-dimensional problem. We shall first illustrate the es-
sence of. the asymptotic method by means of a simple example drawn from the
work of Goldenveiser and Van der Heijden. Then we shall indicate the implica-
tion of the results for nonlinear shell theory.

Let (r,0,z) denote a set of cylindrical coordinates and consider a homo-
geneous, elastically isotropic plate that occupies the region O<r<R, -Hgz<H,
Let the plate be free of body forces and edge tractions but subject to self-
equilibrating normal tractions on its upper and lower faces. The linear
equations of elasticity may be expressed as three equilibrium equations for
the six independent components (¢ , T, OG,T ,T,,0) of the symmetric stress
tensor plus six stress-strain relhtions with tge strains expressed in terms of
the components (u,v,w) of the displacement vector. Let p=r/R and z=z/H. Then
the boundary conditions read

o(p,6, + l)=1_%H200p<p,6), T,.(0,6,%1)=T, (0,0,% 1)=0 (3.1

0,(1,8,2)=1(1,8,z)=1 _(1,6,2)=0, (3.2)

where 0 1s a reference stress chosen so that Ipls 1. The boundary conditions
induce a state of pure bending in which (Or’T’OG’O’u’V) are odd in ¢ and
(Tr,Te,W) are even.

Goldenveiser's approach, following earlier work by Friedrichs and Dresslewr
[18] and Green [11], is to express each unknown as the sum of a "basic" or in-
terior contribution plus two distinet "auxiliary" or edge zone contributions.
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The edge zoni contributions are expressed in terms of the scaled variable
z=(R-r)/HZe ~(1-p) so that, for example,

Or(p,e,C;€)=GO[Zr(p,G,C;€)+5T(E,9,C;€)+8r(i,6,c;€)]
and u(p,0,z;e)+(R/E)[U(p,0,z;5e)+u(£,0,0;¢)+0(5,0,25¢) ],

For a traction free edge, Goldenveiser [19] assumes the following formal as~
ymptotic expansions

(Z L,T,2,,T ,T.,2,U,V,W)

S 69 e’
NEEH(ZH T?Zg, ,eTg,gan ot Vn "lwn) (3.3)
(Gr,...,W)~§€n(EO?,Tn,EOg,ETi,Tg,EGn,EQu,EV,€ W) (3.4)

N ® n Nl n n An 2.n n
CRIRHESHE (6§,er ,ag ?r,e?g,ﬁ et e, et™). (3.5)
The edge zone contributions are assumed to vanish exponentially as 7>,

When these representations are substituted into the elasticity equations
and their assumed asymptotic character accounted for, there results an infi-
nite sequence of differential equations for each infinite sequence of coeffi-

cients {Z sees W), {G seeesW },{82,...,Wn}. Furthermore, the boundary con-

ditions (3.1) and (3.2) imply that for z=+1,

%=+ 3p, (571, 1%, 75)=0 (3.6)
~  ~l and2 ~N ‘~n
(Te,re,re +?e, +? +8™)=0 (3.7)

and that for p=1 and &=0:

(22,1040, 147 0 #3067 TR AT )= (3.8)
b

where n=0,1,2,444 &

The equations for the interior coefficients may be integrated systemati-
cally with respect to ¢.  Application of the face boundary conditions (3.6)
leads, in the first instance, to the classical equation of plate bending

O

o_ 2 -
(2/3)AAW —(l—\) )P, AW W’E;E (3-9)

All of the remaining lowest order interior coefficients are expressible in
terms of W'; in particular

20 (1) e WS +v(oTHS 400w

. ' ,69] 2/3§M;(p,e) (3.10)

(1-v
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10=(1+0) e [0 WS gm0 WS 5 122/308%(0,6) (3.11)
o_ 1 2\=1 2 oy - 2,.0
T =-5(1-v7) (=gt e, = 3/4 (1-27)a (p,8). (3.12)

The first of the edge boundary conditions in (368)’ namely Z§=O, yields only
one of the two boundary conditions needed for W . To obtain the second, the
edge zone solutions must be considered.

The infinite sequence of differential equations for the set of edge zone
coefficients (T ,...,w) can be grouped into sets which resemble the nonho-
mogeneous St.~Vénant equations for the torsion of a prism whose cross-section
is the semi-infinite strip E?O,Iclsl. Likewise the differential equations for
the coefficients (8 ,...,%) can be grouped into sets which resemble the non-
homogeneous equations of plane strain for the same semi-infinite strip. The
solutions of the torsion and plane strain problems are coupled through the non-
homogeneous terms in the differential equations as well as through the boundary
conditions (3.7) and (3.8) which also 1link these solutions with the interior
solutions., It should be noted that in the edge zone differential equations, 6
appears only as a parameter.

In order that the edge zone solutions decay as &2, it is necessary that
the forces and moments applied to the boundary of the semi-infinite strip be
equilibrated by the non-homogeneous terms in the torsion and plane strain
equilibrium equations. These integral conditions yield, ultimately, the addi-~
tional boundary conditions needed for the various interior solutions, For ex-
ample, the Kirchhoff boundary condition that relates the shear stress resul—
tant Q and the derivative along the edge of the twisting stress couple H is
obtainéd as follows,

The solution of the lowest order torsion problem may be expressed in terms
of a stress function ¢, where

r°=o0, ¥, (8,41)=0, ,.(0,2)=-C (3.13)
and
= -2/3t8°(1,0007,, Tg= -2/30H°(1,8)07, (3.14)

The lowest order equation for equilibrium in the Z-direction for the plane
strain problem is

(R472),, + (8%457), = %) ,=R) (3.15)

g 2= "lg,0T g

From the last of the boundary conditions (3.7) and (3.8), the condition that
the net forces in the C-direction add to zero, to lowest order, is

‘{i_[Ti(l’e’C) + f Ry °(£,0,7)ag]ldz=0. (3.16)
With the aid of (3.12) and (3.13) to (3.15), (3.16) reduces to
Q + 10 2= 0 at p=l, (3.17)
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which is the second boundary condition gor Wo. It 1s important to note that
one never needs to actually solve for Y~ to obtalin this result.

GOLDENVEISER'S EXTENSION AND KOITER'S SIMPLIFICATION OF THE PRECEDING RESULTS

The solution for (Zl, oo s Wl) reduces to the solution of a biharmonic
equation for Wi, To obtain boundary conditions for Wl one again considers the
integral conditions of overall equilibrium necessary to guarantee decaying
edge zone solutions. To evaluaté these, one must solve explicitly for ¢
(which is easily done) but needs only to consider the form of the solution of
the lowest order plane strain problem., After a straightforward but tedious
analysis, there results the refined boundary conditions of Goldenveiser [197:

Mi = am,g, Q-+ H}e + AHS =0, (k1)
where A=1.260,..is computed from the solution for wo. The details of the cal-
culations leading to (4.1) may be found in a report by Van der Heijden [20].

Goldenveiser's results may be restated in the following useful way. Con-
sider a plate of radius R and thickness 2H subject to a self-equilibrated nor-
mal pressure p but otherwise free of surface and edge tractions. Solve the
classical equation of plate bending subject to the refined boundary conditions.

- = +
M, A(H/R)H 0, Q +H

g T 0 + A(H/R)H,e = 0 at p=l. (k.2)

Then the stresses in the interior of the Blate, to within a relative error of
O(HQ/RQ), are given by the formulas for I, TO, etc. but with W~ replaced by
W. Moreover, in the edge zone of the pla%e, the dominant stresses, to within a
relative error of O(H/R), are given by these same formulas except that TO is
replaced by T°+t°, and Ty is replaced by %g, where T° and Tg are givenby (3.1k4)

These results are simple and satisfying. Though derived for, perhaps, the
simplest, non~trivial problem imaginable, their qualitative implications for
shells with free edges undergoing large deformations is clear, namely 1), the
most importnat refinement of the classical shell equations are in the boundary
conditions and 2), the dominant stresses near a free edge can be inferred from
the solutlon of the shell equations and the solution of a torsion problem for
a semi-infinite strip. To give these statements a guantitative form via an
asymptotic analysis would seem to be a formidable task.

The problem of refining the Kirchhoff boundary conditions at a free edge
has, fortunately,been solved by Koiter [15] in an alternate way, using an in-
genious energy argument. As Danielson [21], and Koiter [22] have shown, the
three-dimensional tangential shear stress predicted by shell theory-at a free
edge does not vanish, even though the Kirchhoff boundary conditions are satis-
fied exactly. Thus the conventional strain energy expression of shell theory
overestimates the torsional energy in the neighborhood of a free edge. To as-
sess this error, Koiter considers the torsional rigidity of a flat strip whose
thickness is equal to that of the shell., By comparing this expression with
that given by classical plate theory he is able to identify an edge zone cor-
rection factor which is proportional to the twist per unit length of the edge
of the strip. The torsional energy associated with this term is therefore
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expressible as a line integral., For an arbitrary shell with a smooth edge
curve Koiter argues that one merely needs to insert an appropiate expression
for the edge twisting per unit length for the shell into this line integral and
then subtract this expression from the conventional surface integral for the
shell energy.

Koiter's result may be of limited practical value., If the shell has other
edges that are not free of stress, it is most likely that the associated shell
boundary conditions cannot be refined because the corresponding boundary con-
ditions of elasticity theory cannot be determined precisely. The shell equa~
tions are elliptic, hence the influence of boundary conditions extend every-
where, and it would be inconsistent to use refined boundary conditions at a
free edge but unrefined ones at another edge.

The results of this section also imply that so-called thick shell theories
are meaningless if applied to homogeneous shells with edges. We should note,
however, that Van der Heijden has shown that Reissner's latest thick plate
theory [23] does give fairly good numerical results for stress concentration
factors for circular holes in infinite plates.

THE DIRECT APPROACH TO SHELL THEORY

Here and in the following section we mention briefly — space limitations
permit no more — some recent work concerning different formulations, implica-
tions, simplifications and the reduction of certain problems of the now gen-
erally accepted equations of first-approximation shell theory.

Formulations of the Nonlinear Theory

A strictly mechanical theory of shells may be expressed entirely in terms
of the midsurface displacement components [5]. If dynamic effects are excluded,
alternate formulations are possible in terms of the components. of a stress
function and rotation wvector [8], or in terms of stress resultants and bending
strains [15]. In the last case, any displacement boundary conditions need to
be reformulated in terms of strains [24,25]. This in itself has advantages,
for it automatically leads to the boundary conditions for inextensional defor-
mation and, in the linear theory, it gives boundary conditions that are the
geometric analogues of the Kirchhoff conditions,

Thermodynamic Considerations

These are important for at least three reasons. 1) heating a shell may
cause it to fail, buckle, or vibrate; 2) the best justification of the static
approach to stability for a continuous body is a thermodynamic one; and 3) the
coupling of mechanical and thermal effects produces damping.

There is a plethora of papers on 1) that we shall not attempt to review;
a few texts give a discussion of the underlying ideas. The thermodynamic as-
pects of stability in general elastic systems are discussed in [26,27,28].
These results are directly transferable to shell theory. The specific form
and role of the laws of thermodynamics in shell theory are discussed in (10].
The effect of thermal damping on the free vibrations of shells is considered
in [29] where it is also shown that, because the damping is light, perturbation
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methods may be used to advantage.
Variational Principles

A problem of long standing in nonlinear elasticity has been to formulate
a principle of complementary energy. Recent work [30,31,32] has established
conditions under which this is possible, In particular, in [33] and [3L4],
these results have been applied to the nonlinear von Karman plate equations
and Marguerre shallow shell equations to obtain upper and lower bounds on an
assoclated energy functional.

SOME NEW RESULTS IN LINEAR SHELL THEORY
Shells As Beams
For general cylindrical shells and shells of revolution, one may consider
special classes of solutions that, in a St. Venant sense, correspond to the

stretching, bending, twisting, and flexure of a beam., In many cases the re~
sulting equations can be solved explicitly. See [35,36].

Reduction of the Governing Equations

The shell equations constitute a system of eighth order. For analytical
purposes, especially for the application of perturbation methods, it is often
convenient to attempt to express these equations as two coupled fourth order
equations. (A single eighth order equation destroys the very useful static-
geometric duality). Such reductions have been found for spherical, general
cylindrical, and minimal shells as well as for shells of revolution., A reduc-—~
tion for arbitrary, non-developable shells is also possible, but does involve
some loss of accuracy. BSee [37] where other references are cited.

Membrane Theory

It is well known that shells with the proper shape and boundary support
can be analyzed with good accuracy by membrane theory. The details of such
an approach are spelled out in a very general but useful way in [38].

Cracks and Cutouts

Shells may contain cutouts by design and cracks by accident., In practice
the dimensions of these cracks and cutouts is apt to be small compared to some
characteristic geometric dimension of the shell, permitting shallow shell the -
ory to 